Advertisement

GeoBrick: exploration of spatiotemporal data

  • Ji Hwan Park
  • Saad Nadeem
  • Arie Kaufman
Original Article
  • 503 Downloads

Abstract

We present GeoBrick, an interactive technique for exploring spatiotemporal data. In GeoBrick, each region is comprised of multivariate data, which is encoded into simple shapes with colors. Additionally, users can adjust the resolution of data values to get an overview as well as details of the data. GeoBrick allows users to (1) juxtapose data and spatial profiles of discontiguous regions, (2) identify temporal patterns of user-defined classes of regions, and (3) comparatively evaluate across distinct configurations of regions. We demonstrate the effectiveness and efficacy of GeoBrick using two case studies.

Keywords

Visual analytics Spatiotemporal visualization Multivariate data Interactive data analysis 

Notes

Acknowledgements

This work has been partially supported by the National Science Foundation Grants IIP1069147, CNS1302246, IIS1527200, NRT1633299, and CNS1650499.

References

  1. 1.
    Andrienko, G., Andrienko, N., Bremm, S., Schreck, T., Von Landesberger, T., Bak, P., Keim, D.: Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Comput. Graph. Forum 29(3), 913–922 (2010)CrossRefGoogle Scholar
  2. 2.
    Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S.I., Jern, M., Kraak, M.J., Schumann, H., Tominski, C.: Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 24(10), 1577–1600 (2010)CrossRefGoogle Scholar
  3. 3.
    Andrienko, G., Andrienko, N., Fuchs, G., Wood, J.: Revealing patterns and trends of mass mobility through spatial and temporal abstraction of origin-destination movement data. IEEE Trans. Vis. Comput. Graph. 23(9), 2120–2136 (2017)CrossRefGoogle Scholar
  4. 4.
    Andrienko, G.L., Andrienko, N.V.: Interactive maps for visual data exploration. Int. J. Geogr. Inf. Sci. 13(4), 355–374 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Buschmann, S., Trapp, M., Döllner, J.: Animated visualization of spatial-temporal trajectory data for air-traffic analysis. Vis. Comput. 32(3), 371–381 (2016)CrossRefGoogle Scholar
  6. 6.
    Cibulski, L., Gračanin, D., Diehl, A., Splechtna, R., Elshehaly, M., Delrieux, C., Matković, K.: ITEA—interactive trajectories and events analysis: exploring sequences of spatio-temporal events in movement data. Vis. Comput. 32(6), 847–857 (2016)CrossRefGoogle Scholar
  7. 7.
    Claessen, J.H.T., van Wijk, J.J.: Flexible linked axes for multivariate data visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2310–2316 (2011)CrossRefGoogle Scholar
  8. 8.
    Dorling, D.: Area Cartograms: Their Use and Creation. University of East Anglia, Environmental Publications, Norwich (1996)Google Scholar
  9. 9.
    Eppstein, D., van Kreveld, M., Speckmann, B., Staals, F.: Improved grid map layout by point set matching. In: IEEE Symposium on Pacific Visualization, pp. 25–32 (2013)Google Scholar
  10. 10.
    Fuchs, J., Isenberg, P., Bezerianos, A., Fischer, F., Bertini, E.: The influence of contour on similarity perception of star glyphs. IEEE Trans. Vis. Comput. Graph. 20(12), 2251–2260 (2014)CrossRefGoogle Scholar
  11. 11.
    Goodwin, S., Dykes, J., Slingsby, A., Turkay, C.: Visualizing multiple variables across scale and geography. IEEE Trans. Vis. Comput. Graph. 22(1), 599–608 (2016)CrossRefGoogle Scholar
  12. 12.
    Gratzl, S., Gehlenborg, N., Lex, A., Pfister, H., Streit, M.: Domino: extracting, comparing, and manipulating subsets across multiple tabular datasets. IEEE Trans. Vis. Comput. Graph. 20(12), 2023–2032 (2014)CrossRefGoogle Scholar
  13. 13.
    Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., Streit, M.: LineUp: visual analysis of multi-attribute rankings. IEEE Trans. Vis. Comput. Graph. 19(12), 2277–2286 (2013)CrossRefGoogle Scholar
  14. 14.
    Guo, D., Chen, J., MacEachren, A.M., Liao, K.: A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Trans. Vis. Comput. Graph. 12(6), 1461–1474 (2006)CrossRefGoogle Scholar
  15. 15.
    Harrower, M., Brewer, C.A.: Colorbrewer.org: an online tool for selecting colour schemes for maps. Cartogr. J. 40(1), 27–37 (2003)CrossRefGoogle Scholar
  16. 16.
    Hoeber, O., Wilson, G., Harding, S., Enguehard, R., Devillers, R.: Exploring geo-temporal differences using GTdiff. In: IEEE Symposium on Pacific Visualization, pp. 139–146 (2011)Google Scholar
  17. 17.
    Im, J.F., McGuffin, M.J., Leung, R.: GPLOM: the generalized plot matrix for visualizing multidimensional multivariate data. IEEE Trans. Vis. Comput. Graph. 19(12), 2606–2614 (2013)CrossRefGoogle Scholar
  18. 18.
    Jern, M., Franzen, J.: “GeoAnalytics”: exploring spatio-temporal and multivariate data. In: Proceedings of the Tenth International Conference on Information Visualisation, pp. 25–31 (2006)Google Scholar
  19. 19.
    Kehrer, J., Piringer, H., Berger, W., Groller, M.E.: A model for structure-based comparison of many categories in small-multiple displays. IEEE Trans. Vis. Comput. Graph. 19(12), 2287–2296 (2013)CrossRefGoogle Scholar
  20. 20.
    von Landesberger, T., Brodkorb, F., Roskosch, P., Andrienko, N., Andrienko, G., Kerren, A.: Mobilitygraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans. Vis. Comput. Graph. 22(1), 11–20 (2016)CrossRefGoogle Scholar
  21. 21.
    Liu, X., Hu, Y., North, S., Shen, H.W.: Correlatedmultiples: spatially coherent small multiples with constrained multi-dimensional scaling. In: Computer Graphics Forum (2015)Google Scholar
  22. 22.
    Meulemans, W., Dykes, J., Slingsby, A., Turkay, C., Wood, J.: Small multiples with gaps. IEEE Trans. Vis. Comput. Graph. 23(1), 381–390 (2017)CrossRefGoogle Scholar
  23. 23.
    National Center For Health Statistics. http://www.cdc.gov/nchs/ Accessed Jan 2015
  24. 24.
    OECD data. https://data.oecd.org/. Accessed Nov 2017
  25. 25.
    Papadopoulos, C., Petkov, K., Kaufman, A., Mueller, K.: The Reality Deck—an immersive gigapixel display. IEEE Comput. Graph. Appl. 35(1), 33–45 (2015)CrossRefGoogle Scholar
  26. 26.
    Rao, R., Card, S.K.: The Table Lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 318–322 (1994)Google Scholar
  27. 27.
    Roth, R.: An empirically-derived taxonomy of interaction primitives for interactive cartography and geovisualization. IEEE Trans. Vis. Comput. Graph. 19(12), 2356–2365 (2013)CrossRefGoogle Scholar
  28. 28.
    Sadana, R., Major, T., Dove, A., Stasko, J.: OnSet: a visualization technique for large-scale binary set data. IEEE Trans. Vis. Comput. Graph. 20(12), 1993–2002 (2014)CrossRefGoogle Scholar
  29. 29.
    Slingsby, A., Dykes, J., Wood, J.: Exploring uncertainty in geodemographics with interactive graphics. IEEE Trans. Vis. Comput. Graph. 17(12), 2545–2554 (2011)CrossRefGoogle Scholar
  30. 30.
    Speckmann, B., Verbeek, K.: Necklace maps. IEEE Trans. Vis. Comput. Graph. 16(6), 881–889 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Swedberg, B., Robinson, A.C., Hardisty, F., Peuquet, D.J.: Geovisualization of spatio-temporal events in STempo. In: GeoVisual Analytics: Interactivity, Dynamics, and Scale Workshop at GIScience Conference (2014)Google Scholar
  32. 32.
    Tennekes, M., de Jonge, E.: Tree colors: color schemes for tree-structured data. IEEE Trans. Vis. Comput. Graph. 20(12), 2072–2081 (2014)CrossRefGoogle Scholar
  33. 33.
    Tominski, C., Schulz, H.J.: The great wall of space-time. In: Proceedings of the Workshop on Vision, Modeling and Visualization, pp. 199–206 (2012)Google Scholar
  34. 34.
    United States Census Bureau. http://www.census.gov/. Accessed Jan 2015
  35. 35.
    U.S. Energy Information Administration: State Energy Data System. http://www.eia.gov/state/seds/. Accessed Nov 2016
  36. 36.
    Ware, C.: Information Visualization: Perception for Design, 3rd edn. Morgan Kaufmann Publishers, Los Altos (2012)Google Scholar
  37. 37.
    Wickham, H., Hofmann, H.: Product plots. IEEE Trans. Vis. Comput. Graph. 17(12), 2223–2230 (2011)CrossRefGoogle Scholar
  38. 38.
    Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers, Los Altos (2005)zbMATHGoogle Scholar
  39. 39.
    Xiaoru, Y., Peihong, G., He, X., Hong, Z., Huamin, Q.: Scattering points in parallel coordinates. IEEE Trans. Vis. Comput. Graph. 15(6), 1001–1008 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations