The Visual Computer

, Volume 34, Issue 12, pp 1713–1723 | Cite as

Explicit design of transfer functions for volume-rendered images by combining histograms, thumbnails, and sketch-based interaction

  • Daniel Simões Lopes
  • Pedro F. Parreira
  • Ana R. Mendes
  • Vasco M. Pires
  • Soraia F. Paulo
  • Carlos Sousa
  • Joaquim A. Jorge
Original Article


Visual quality of volume rendering for medical imagery strongly depends on the underlying transfer function. Conventional Windows–Icons–Menus–Pointer interfaces typically refer the user to browse a lengthy catalog of predefined transfer functions or to pain-staking refine the transfer function by clicking and dragging several independent handles. To turn the standard design process less difficult and tedious, this paper proposes novel interactions on a sketch-based interface that supports the design of 1D transfer functions via touch gestures to directly control voxel opacity and easily assign colors. User can select different types of transfer function shapes including ramp function, free hand curve drawing, and slider bars similar to those of a mixing table. An assorted array of thumbnails provides an overview of the data when editing the transfer function. User performance is evaluated by comparing the time and effort necessary to complete a number of tests with sketch-based and conventional interfaces. Users were able to more rapidly explore and understand volume data using the sketch-based interface, as the number of design iterations necessary to obtain a desirable transfer function was reduced. In addition, informal evaluation sessions carried out with professionals (two senior radiologists, a general surgeon and two scientific illustrators) provided valuable feedback on how suitable the sketch-based interface is for illustration, patient communication and medical education.


Transfer function Volume rendering 3D medical images Sketch-based interfaces Thumbnails User study 



All authors are thankful for the financial support given by Portuguese Foundation for Science and Technology (FCT). In particular, the first author thanks for the postdoctoral grant SFRH/BPD/97449/2013. This work was also partially supported by national funds through FCT with reference UID/CEC/50021/2013 and IT-MEDEX PTDC/EEI-SII/6038/2014.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

371_2017_1448_MOESM1_ESM.mp4 (32.4 mb)
Supplementary material 1 (mp4 33168 KB)


  1. 1.
    Arens, S., Domik, G.: A survey of transfer functions suitable for volume rendering. In: Proceedings of the 8th IEEE/EG International Conference on Volume Graphics, pp. 77–83. Eurographics Association (2010)Google Scholar
  2. 2.
    Brix, T., Scherzinger, A., Völker, A., Hinrichs, K.: Interactive position-dependent customization of transfer function classification parameters in volume rendering. In: Proceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 83–92 (2015)Google Scholar
  3. 3.
    Chevalier, F., Dragicevic, P., Hurter, C.: Histomages: fully synchronized views for image editing. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST’12, pp. 281–286 (2012)Google Scholar
  4. 4.
    Corcoran, A., Redmond, N., Dingliana, J.: Perceptual enhancement of two-level volume rendering. Comput. Graph. 34, 388–397 (2010)CrossRefGoogle Scholar
  5. 5.
    Dolnicar, S., Grün, B., Leisch, F.: Quick, simple and reliable: forced binary survey questions. Int. J. Mark. Res. 53, 231 (2011)CrossRefGoogle Scholar
  6. 6.
    Freiman, M., Joskowicz, L., Lischinski, D., Sosna, J.: A feature-based transfer function for liver visualization. Int. J. CARS 2(1), 125–126 (2007)Google Scholar
  7. 7.
    Guo, H., Mao, N., Yuan, X.: WYSIWYG (what you see is what you get) volume visualization. IEEE Trans. Visual. Comput. Graph. 17(12), 2106–2114 (2011)CrossRefGoogle Scholar
  8. 8.
    Guo, H., Yuan, X.: Local WYSIWYG volume visualization. In: Visualization Symposium (PacificVis), IEEE Pacific, pp. 65–72 (2013)Google Scholar
  9. 9.
    Higuera, F. V., Sauber, N., Tomandl, B., Nimsky, C., Greiner, G., Hastreiter, P.: Automatic adjustment of bidimensional transfer functions for direct volume visualization of intracranial aneurysms. In Medical Imaging 2004, pp. 275–284. International Society for Optics and Photonics (2004)Google Scholar
  10. 10.
    Hurter, C., Taylor, R., Carpendale, S., Telea, A.: Color tunneling: interactive exploration and selection in volumetric datasets. In: IEEE Pacific Visualization Symposium (PacificVis), IEEE Pacific, pp. 225–232 (2014)Google Scholar
  11. 11.
    Ip, C.Y., Varshney, A., JaJa, J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Trans. Visua. Comput. Graph. 18(12), 2355–2363 (2012)CrossRefGoogle Scholar
  12. 12.
    Isenberg, T.: Position paper: touch interaction in scientific visualization. In: Proceedings of the Workshop on Data Exploration on Interactive Surfaces (DEXIS 2011, November 13, 2011, Kobe, Japan), pp. 24–27. INRIA (2011)Google Scholar
  13. 13.
    Jönsson, D., Falk, M., Ynnerman, A.: Intuitive exploration of volumetric data using dynamic galleries. IEEE Trans. Visual. Comput. Graph. 22(1), 896–905 (2016)CrossRefGoogle Scholar
  14. 14.
    Kindlmann, G.: Transfer functions in direct volume rendering: design, interface, interaction. In: Course Notes of ACM SIGGRAPH, vol. 3 (2002)Google Scholar
  15. 15.
    Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of the Conference on Visualization’01, pp. 255–262. IEEE Computer Society (2001)Google Scholar
  16. 16.
    Konig, A., Gröller, E.: Mastering transfer function specification by using volumePro technology. In: Proceedings of Computer Graphics’01, vol. 17, pp. 279–286 (2001)Google Scholar
  17. 17.
    Latulipe, C.: A Symmetric Interaction Model for Bimanual Input. University of Waterloo, Waterloo (2006)Google Scholar
  18. 18.
    Li, L., Peng, H., Chen, X., Cheng, J., Gao, D.: Visualization of boundaries in volumetric data sets through a what material you pick is what boundary you see approach. Comput. Methods Programs Biomed. 126, 76–88 (2016)CrossRefGoogle Scholar
  19. 19.
    Liu, B., Wuensche, B., Ropinski, T.: Visualization by example-a constructive visual component-based interface for direct volume rendering. In: International Conference on Computer Graphics Theory and Applications, 17–21 May, Angers, France, pp. 254–259 (2010)Google Scholar
  20. 20.
    Lundström, C., Ynnerman, A., Ljung, P., Persson, A., Knutsson, H.: The alpha-histogram: using spatial coherence to enhance histograms and transfer function design. In: Proceedings Eurographics/IEEE-VGTC Symp, Visualization (EuroVis) (2006)Google Scholar
  21. 21.
    Marks, J., Andalman, B., Beardsley, P. A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: Design galleries: a general approach to setting parameters for computer graphics and animation. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97), pp. 389–400 (1997)Google Scholar
  22. 22.
    Praßni, J. S., Ropinski, T., Hinrichs, K.: Efficient boundary detection and transfer function generation in direct volume rendering. In: 14th International Fall Workshop on Vision, Modeling, and Visualization (VMV 2009), November 16-18, 2009, Braunschweig, Germany, pp. 285–294 (2009)Google Scholar
  23. 23.
    Praßni, J. S., Ropinski, T., Mensmann, J., Hinrichs, K.: Shape-based transfer functions for volume visualization. In: Visualization Symposium (PacificVis), IEEE Pacific, pp. 9–16 (2010)Google Scholar
  24. 24.
    Roettger, S., Bauer, M., Stamminger, M.: Spatialized transfer functions. EuroVis, pp. 271–278 (2005)Google Scholar
  25. 25.
    Ropinski, T., Praßni, J., Steinicke, F., Hinrichs, K.: Stroke-based transfer function design. In: Proceedings of the Fifth Eurographics/IEEE VGTC Conference on Point-Based Graphics, August 10–11, 2008, Los Angeles, CA, pp. 41–48 (2008)Google Scholar
  26. 26.
    Sereda, P., Bartroli, A.V., Serlie, I.W.O., Gerritsen, F.A.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans. Visual. Comput. Graph. 12(2), 208–218 (2006)CrossRefGoogle Scholar
  27. 27.
    Wiebel, A., Vos, F.M., Foerster, D., Hege, H.C.: WYSIWYP: what you see is what you pick. IEEE Trans. Visual. Comput. Graph. 18(12), 2236–2244 (2012)CrossRefGoogle Scholar
  28. 28.
    Wu, Y., Qu, H.: Interactive transfer function design based on editing direct volume rendered images. IEEE Trans. Visual. Comput. Graph. 13(5), 1027–1040 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.INESC-ID LisboaPorto SalvoPortugal
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.Center for Research and Creativity in InformaticsHospital Prof. Doutor Fernando FonsecaAmadoraPortugal

Personalised recommendations