The Visual Computer

, Volume 33, Issue 6–8, pp 869–881 | Cite as

Interactive GPU-based generation of solvent-excluded surfaces

  • Pedro HermosillaEmail author
  • Michael Krone
  • Victor Guallar
  • Pere-Pau Vázquez
  • Àlvar Vinacua
  • Timo Ropinski
Original Article


The solvent-excluded surface (SES) is a popular molecular representation that gives the boundary of the molecular volume with respect to a specific solvent. SESs depict which areas of a molecule are accessible by a specific solvent, which is represented as a spherical probe. Despite the popularity of SESs, their generation is still a compute-intensive process, which is often performed in a preprocessing stage prior to the actual rendering (except for small models). For dynamic data or varying probe radii, however, such a preprocessing is not feasible as it prevents interactive visual analysis. Thus, we present a novel approach for the on-the-fly generation of SESs, a highly parallelizable, grid-based algorithm where the SES is rendered using ray-marching. By exploiting modern GPUs, we are able to rapidly generate SESs directly within the mapping stage of the visualization pipeline. Our algorithm can be applied to large time-varying molecules and is scalable, as it can progressively refine the SES if GPU capabilities are insufficient. In this paper, we show how our algorithm is realized and how smooth transitions are achieved during progressive refinement. We further show visual results obtained from real-world data and discuss the performance obtained, which improves upon previous techniques in both the size of the molecules that can be handled and the resulting frame rate.


Molecular visualization Surface representation Distance field 



This work has been partially supported by Grant TIN2014-52211-C2-1-R and Grant CTQ2016-79138-R from the Spanish Ministerio de Economía y Competitividad with FEDER funds, and by the German Research Foundation (DFG) as part of Collaborative Research Center SFB 716.

Supplementary material

371_2017_1397_MOESM1_ESM.mp4 (11.6 mb)
Supplementary material 1 (mp4 11912 KB)


  1. 1.
    Behley, J., Steinhage, V., Cremers, A.B.: Efficient radius neighbor search in three-dimensional point clouds. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3625–3630 (2015)Google Scholar
  2. 2.
    Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph. 1(3), 235–256 (1982)CrossRefGoogle Scholar
  3. 3.
    Can, T., Chen, C.I., Wang, Y.F.: Efficient molecular surface generation using level-set methods. J. Mol. Graph. Model. 25(4), 442–454 (2006)CrossRefGoogle Scholar
  4. 4.
    Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16(5), 548–558 (1983)CrossRefGoogle Scholar
  5. 5.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Green, S.: White paper: CUDA particles. Technical reports (2007)Google Scholar
  7. 7.
    Greer, J., Bush, B.L.: Macromolecular shape and surface maps by solvent exclusion. Proc. Natl. Acad. Sci. 75, 303–307 (1978)CrossRefGoogle Scholar
  8. 8.
    Grottel, S., Krone, M., Müller, C., Reina, G., Ertl, T.: MegaMol—a prototyping framework for particle-based visualization. IEEE Trans. Vis. Comput. Graph. 21(2), 201–214 (2015)CrossRefGoogle Scholar
  9. 9.
    Hadwiger, M., Sigg, C., Scharsach, H., Bhler, K., Gross, M.: Real-time ray-casting and advanced shading of discrete isosurfaces. Comput. Graph. Forum 24(3), 303–312 (2005)CrossRefGoogle Scholar
  10. 10.
    Hermosilla, P., Guallar, V., Vinacua, A., Vázquez, P.: High quality illustrative effects for molecular rendering. Comput. Graph. 24, 113–120 (2015)Google Scholar
  11. 11.
    Hoetzlein, R.C.: Fast fixed-radius nearest neighbors: interactive million-particle fluids. In: GPU Technology Conference (2014)Google Scholar
  12. 12.
    Jurcik, A., Parulek, J., Sochor, J., Kozlikova, B.: Accelerated visualization of transparent molecular surfaces in molecular dynamics. In: IEEE Pacific Visualization Symposium, pp. 112–119 (2016)Google Scholar
  13. 13.
    Kozlíková, B., Krone, M., Lindow, N., Falk, M., Baaden, M., Baum, D., Viola, I., Parulek, J., Hege, H.C.: Visualization of molecular structure: state of the art revisited. Comput. Graph. Forum (2016)Google Scholar
  14. 14.
    Krone, M., Bidmon, K., Ertl, T.: Interactive visualization of molecular surface dynamics. IEEE Trans. Vis. Comput. Graph. 15(6), 1391–1398 (2009)CrossRefGoogle Scholar
  15. 15.
    Krone, M., Grottel, S., Ertl, T.: Parallel contour-buildup algorithm for the molecular surface. In: IEEE Symposium on Biological Data Visualization, pp. 17–22 (2011)Google Scholar
  16. 16.
    Krone, M., Stone, J.E., Ertl, T., Schulten, K.: Fast visualization of gaussian density surfaces for molecular dynamics and particle system trajectories. EuroVis-Short Pap. 1, 67–71 (2012)Google Scholar
  17. 17.
    Lindow, N., Baum, D., Hege, H.C.: Ligand excluded surface: a new type of molecular surface. IEEE Trans. Vis. Comput. Graph. 20(12), 2486–2495 (2014)CrossRefGoogle Scholar
  18. 18.
    Lindow, N., Baum, D., Prohaska, S., Hege, H.C.: Accelerated visualization of dynamic molecular surfaces. Comput. Graph. Forum 29(3), 943–952 (2010)CrossRefGoogle Scholar
  19. 19.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. Interact. Tech. 21, 163–169 (1987)CrossRefGoogle Scholar
  20. 20.
    Parulek, J., Viola, I.: Implicit representation of molecular surfaces. In: 2012 IEEE Pacific Visualization Symposium, pp. 217–224 (2012). doi: 10.1109/PacificVis.2012.6183594
  21. 21.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)CrossRefGoogle Scholar
  22. 22.
    Richards, F.M.: Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng. 6(1), 151–176 (1977)CrossRefGoogle Scholar
  23. 23.
    Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3), 305–320 (1996)CrossRefGoogle Scholar
  24. 24.
    Skånberg, R., Vázquez, P.P., Guallar, V., Ropinski, T.: Real-time molecular visualization supporting diffuse interreflections and ambient occlusion. IEEE Trans. Vis. Comput. Graph. 22(1), 718–727 (2016)CrossRefGoogle Scholar
  25. 25.
    Tarini, M., Cignoni, P., Montani, C.: Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1237–1244 (2006)CrossRefGoogle Scholar
  26. 26.
    Totrov, M., Abagyan, R.: The contour-buildup algorithm to calculate the analytical molecular surface. J. Struct. Biol. 116, 138–143 (1995)CrossRefGoogle Scholar
  27. 27.
    Varshney, A., Brooks, F.P., Wright, W.V.: Linearly scalable computation of smooth molecular surfaces. IEEE Comput. Graph. Appl. 14(5), 19–25 (1994)CrossRefGoogle Scholar
  28. 28.
    Xu, D., Zhang, Y.: Generating triangulated macromolecular surfaces by Euclidean distance transform. PLoS ONE 4(12), e8140 (2009)CrossRefGoogle Scholar
  29. 29.
    Yu, Z.: A List-based method for fast generation of molecular surfaces. In: International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 31, pp. 5909–5912 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Pedro Hermosilla
    • 1
    Email author
  • Michael Krone
    • 2
  • Victor Guallar
    • 3
  • Pere-Pau Vázquez
    • 1
  • Àlvar Vinacua
    • 1
  • Timo Ropinski
    • 4
  1. 1.Visualization, Virtual Reality and Graphics Interaction (ViRVIG)Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Visualization Research CenterUniversity of StuttgartStuttgartGermany
  3. 3.Barcelona Supercomputing CenterBarcelonaSpain
  4. 4.Research Group Visual ComputingUlm UniversityUlmGermany

Personalised recommendations