Advertisement

The Visual Computer

, Volume 33, Issue 6–8, pp 913–923 | Cite as

Marbling-based creative modelling

  • Shufang Lu
  • Yue Huang
  • Xiaogang JinEmail author
  • Aubrey Jaffer
  • Craig S. Kaplan
  • Xiaoyang Mao
Original Article
  • 309 Downloads

Abstract

Most mathematical marbling simulations generate patterns for texture mapping and surface decoration. We explore the application of three-dimensional deformations inspired by mathematical marbling as a suite of tools to enable creative shape design. Our tools are expressed as analytical functions of space and are volume-preserving vector fields, meaning that the modelling process preserves volumes and avoids self-intersections. Complicated deformations are easily combined to create complex objects from simple ones. To achieve smooth and high-quality shapes, we also present a mesh refinement and simplification algorithm adapted to our deformations. We show a number of examples of shapes created with our technique in order to demonstrate its power and expressiveness.

Keywords

Computational geometry Shape modelling Volume-preserving vector fields Marbling art 

Notes

Acknowledgements

Shufang Lu was supported by the National Natural Science Foundation of China (Grant No. 61402410) and the China Scholarship Council. Xiaogang Jin was supported by the National Natural Science Foundation of China (Grant No. 61472351).

Supplementary material

Supplementary material 1 (avi 23583 KB)

References

  1. 1.
  2. 2.
    Acar, R.: Level set driven flows. ACM Trans. Graph. (TOG) 26(4), 15 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Akgun, B.T.: The digital art of marbled paper. Leonardo 37(1), 49–52 (2004)CrossRefGoogle Scholar
  4. 4.
    Ando, R., Tsuruno, R.: Vector graphics depicting marbling flow. Comput. Graph. 35(1), 148–159 (2011)CrossRefGoogle Scholar
  5. 5.
    Angelidis, A., Wyvill, G., Cani, M.P.: Sweepers: swept deformation defined by gesture. Graph. Model 68(1), 2–14 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Barr, A.H.: Global and local deformations of solid primitives. ACM Siggraph Comput. Graph. 18(3), 21–30 (1984)CrossRefGoogle Scholar
  7. 7.
    Blanc, C.: Generic implementation of axial deformation techniques. Graph. Gems 5, 249–256 (1995)Google Scholar
  8. 8.
    Brochu, T., Bridson, R.: Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31(4), 2472–2493 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cohen-Or, D., Zhang, H.: From inspired modeling to creative modeling. Vis. Comput. 32(1), 7–14 (2016)CrossRefGoogle Scholar
  10. 10.
    Cui, Y., Feng, J.: GPU-based smooth free-form deformation with sharp feature awareness. Comput. Aided Geom. Des. 35, 69–81 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gain, J., Bechmann, D.: A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. (TOG) 27(4), 107 (2008)CrossRefGoogle Scholar
  12. 12.
    Gain, J., Marais, P.: Warp sculpting. IEEE Trans. Vis. Comput. Graph. 11(2), 217–227 (2005)CrossRefGoogle Scholar
  13. 13.
    Guo, X., Lin, J., Xu, K., Jin, X.: Creature grammar for creative modeling of 3d monsters. Graph. Models 76(5), 376–389 (2014)CrossRefGoogle Scholar
  14. 14.
    Hsu, W.M., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form deformations. ACM Siggraph Comput. Graph. 26(2), 177–184 (1992)CrossRefGoogle Scholar
  15. 15.
    Huang, H., Kalogerakis, E., Marlin, B.: Analysis and synthesis of 3d shape families via deep-learned generative models of surfaces. Comput. Graph. Forum 34(5), 25–38 (2015)CrossRefGoogle Scholar
  16. 16.
    Hughes, J.F., Van Dam, A., McGuire, M., Sklar, D., Foley, J.D., Feiner, S.K., Akeley, K.: Computer Graphics: Principles and Practice, 3rd edn. Addison Wesley, Boston (2014)Google Scholar
  17. 17.
    Jin, X., Chen, S., Mao, X.: Computer-generated marbling textures: a GPU-based design system. IEEE Comput. Graph. Appl. 27(2), 78–84 (2007)CrossRefGoogle Scholar
  18. 18.
    Kil, Y.J., Renzulli, P., Kreylos, O., Hamann, B., Monno, G., Staadt, O.G.: 3d warp brush modeling. Comput. Graph. 30(4), 610–618 (2006)CrossRefGoogle Scholar
  19. 19.
    Lu, S., Jaffer, A., Jin, X., Zhao, H., Mao, X.: Mathematical marbling. IEEE Comput. Graph. Appl. 32(6), 26–35 (2012)CrossRefGoogle Scholar
  20. 20.
    Lu, S., Jin, X., Jaffer, A., Gao, F., Mao, X.: Solid mathematical marbling. IEEE Comput. Graph. Appl. 37(2), 90–98 (2017)CrossRefGoogle Scholar
  21. 21.
    Maurer-Mathison, D.V.: The Ultimate Marbling Handbook: A Guide to Basic and Advanced Techniques for Marbling Paper and Fabric. Watson-Guptill, New York (1999)Google Scholar
  22. 22.
    Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Fibermesh: designing freeform surfaces with 3d curves. ACM Trans. Graph. (TOG) 26(3), 41 (2007)CrossRefGoogle Scholar
  23. 23.
    Pentland, A., Williams, J.: Good vibrations: modal dynamics for graphics and animation. ACM Siggraph Comput. Graph. 23(3), 207–214 (1989)CrossRefGoogle Scholar
  24. 24.
    Schmitt, B., Pasko, A., Schlick, C.: Shape-driven deformations of functionally defined heterogeneous volumetric objects. In: GRAPHITE2003, ACM, New York, 127–134 2003Google Scholar
  25. 25.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Siggraph Comput. Graph. 20(4), 151–160 (1986)CrossRefGoogle Scholar
  26. 26.
    Sieger, D., Menzel, S., Botsch, M.: On shape deformation techniques for simulation-based design optimization. In: New Challenges in Grid Generation and Adaptivity for Scientific Computing, Springer, Berlin, 281–303 2015Google Scholar
  27. 27.
    Singh, K., Fiume, E.: Wires: a geometric deformation technique. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, 405–414 1998Google Scholar
  28. 28.
    Von Funck, W., Theisel, H., Seidel, H.P.: Vector field based shape deformations. ACM Trans. Graph. (TOG) 25(3), 1118–1125 (2006)zbMATHCrossRefGoogle Scholar
  29. 29.
    Von Funck, W., Theisel, H., Seidel, H.P.: Explicit control of vector field based shape deformations. In: 15th Pacific Conference on Computer Graphics and Applications, 2007. PG’07, pp. 291–300. IEEE, Piscataway (2007)Google Scholar
  30. 30.
    Xie, X., Xu, K., Mitra, N.J., Cohen-Or, D., Gong, W., Su, Q., Chen, B.: Sketch-to-design: context-based part assembly. Comput. Graph. Forum 32(8), 233–245 (2013)CrossRefGoogle Scholar
  31. 31.
    Xu, J., Mao, X., Jin, X.: Nondissipative marbling. IEEE Comput. Graph. Appl. 28(2), 35–43 (2008)CrossRefGoogle Scholar
  32. 32.
    Xu, K., Zhang, H., Cohen-Or, D., Chen, B.: Fit and diverse: set evolution for inspiring 3d shape galleries. ACM Trans. Graph. (TOG) 31(4), 57 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhao, H., Jin, X., Lu, S., Mao, X., Shen, J.: Atelierm++: a fast and accurate marbling system. Multimed. Tool Appl. 44(2), 187–203 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shufang Lu
    • 1
  • Yue Huang
    • 2
  • Xiaogang Jin
    • 2
    Email author
  • Aubrey Jaffer
    • 3
  • Craig S. Kaplan
    • 4
  • Xiaoyang Mao
    • 5
  1. 1.Zhejiang University of TechnologyHangzhouChina
  2. 2.Zhejiang UniversityHangzhouChina
  3. 3.DigilantBostonUS
  4. 4.University of WaterlooWaterlooCanada
  5. 5.University of YamanashiKofuJapan

Personalised recommendations