The Visual Computer

, Volume 33, Issue 6–8, pp 1005–1015 | Cite as

Coherent multi-layer landscape synthesis

  • Oscar Argudo
  • Carlos Andujar
  • Antonio Chica
  • Eric Guérin
  • Julie Digne
  • Adrien Peytavie
  • Eric Galin
Original Article
  • 211 Downloads

Abstract

We present an efficient method for generating coherent multi-layer landscapes. We use a dictionary built from exemplars to synthesize high-resolution fully featured terrains from input low-resolution elevation data. Our example-based method consists in analyzing real-world terrain examples and learning the procedural rules directly from these inputs. We take into account not only the elevation of the terrain, but also additional layers such as the slope, orientation, drainage area, the density and distribution of vegetation, and the soil type. By increasing the variety of terrain exemplars, our method allows the user to synthesize and control different types of landscapes and biomes, such as temperate or rain forests, arid deserts and mountains.

Keywords

Coherent multi-layer landscapes Dictionary matching Example-based modeling 

References

  1. 1.
    Alsweis, M., Deussen, O.: Modeling and visualization of symmetric and asymmetric plant competition, in Eurographics Workshop on Natural Phenomena. The Eurographics Association (2005)Google Scholar
  2. 2.
    Chiba, N., Muraoka, K., Fujita, K.: An erosion model based on velocity fields for the visual simulation of mountain scenery. J. Vis. Comput. Anim. 9(4), 185–194 (1998)CrossRefGoogle Scholar
  3. 3.
    Cordonnier, G., Braun, J., Cani, M.P., Benes, B., Galin, E., Peytavie, A., Eric, G.: Large scale terrain generation from tectonic uplift and fluvial erosion. Comput. Gr. Forum 35(2), 165–175 (2016)CrossRefGoogle Scholar
  4. 4.
    Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., Prusinkiewicz, P.: Realistic modeling and rendering of plant ecosystems, in Proceedings of SIGGRAPH (1998), pp. 275–286Google Scholar
  5. 5.
    Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organics. Springer, New York (2006)Google Scholar
  6. 6.
    Emilien, A., Bernhardt, A., Peytavie, A., Cani, M.P., Galin, E.: Procedural generation of villages on arbitrary terrains. Vis. Comput. 28(6–8), 809–818 (2012)CrossRefGoogle Scholar
  7. 7.
    Emilien, A., Vimont, U., Cani, M.P., Poulin, P., Benes, B.: Worldbrush: interactive example-based synthesis of procedural virtual worlds. ACM Trans. Gr. 34(4), 106:1–106:11 (2015)CrossRefGoogle Scholar
  8. 8.
    Gain, J., Marais, P., Strasser, W.: Terrain sketching, in Proceedings of Symposium on Interactive 3D Graphics and Games (2009), pp. 31–38Google Scholar
  9. 9.
    Gain, J.E., Merry, B., Marais, P.: Parallel, realistic and controllable terrain synthesis. Comput. Gr. Forum 34(2), 105–116 (2015)CrossRefGoogle Scholar
  10. 10.
    Génevaux, J.D., Galin, É., Guérin, É., Peytavie, A., Beneš, B.: Terrain generation using procedural models based on hydrology. ACM Trans. Gr. 32(4), 143:1–143:13 (2013)CrossRefMATHGoogle Scholar
  11. 11.
    Génevaux, J.D., Galin, E., Peytavie, A., Guérin, E., Briquet, C., Grosbellet, F., Benes, B.: Terrain modelling from feature primitives. Comput. Gr. Forum 34(6), 198–210 (2015)CrossRefGoogle Scholar
  12. 12.
    Guérin, E., Digne, J., Galin, E., Peytavie, A.: Sparse representation of terrains for procedural modeling. Comput. Gr. Forum 35(2), 177–187 (2016)CrossRefGoogle Scholar
  13. 13.
    Han, C., Risser, E., Ramamoorthi, R., Grinspun, E.: Multiscale texture synthesis, in ACM SIGGRAPH (2008), pp. 51:1–51:8Google Scholar
  14. 14.
    Hnaidi, H., Guérin, É., Akkouche, S., Peytavie, A., Galin, É.: Feature based terrain generation using diffusion equation. Comput. Gr. Forum 29(7), 2179–2186 (2010)CrossRefGoogle Scholar
  15. 15.
    Kelley, A.D., Malin, M.C., Nielson, G.M.: Terrain simulation using a model of stream erosion. Comput. Gr. 22(4), 263–268 (1988)CrossRefGoogle Scholar
  16. 16.
    Lane, B., Prusinkiewicz, P.: Generating spatial distributions for multilevel models of plant communities, in Proceedings of Graphics Interface (2002), pp. 69–80Google Scholar
  17. 17.
    Musgrave, F.K., Kolb, C.E., Mace, R.S.: The synthesis and rendering of eroded fractal terrains. Comput. Gr. 23(3), 41–50 (1989)CrossRefGoogle Scholar
  18. 18.
    Měch, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment, in Proceedings of SIGGRAPH (1996), pp. 397–410Google Scholar
  19. 19.
    Nagashima, K.: Computer generation of eroded valley and mountain terrains. Vis. Comput. 13(9–10), 456–464 (1998)CrossRefMATHGoogle Scholar
  20. 20.
    Prusinkiewicz, P., Hammel, M.: A fractal model of mountains with rivers, in Proceedings of Graphics Interface (1993), pp. 174–180Google Scholar
  21. 21.
    Smelik, R.M., Tutenel, T., Bidarra, R., Beneš, B.: A survey on procedural modelling for virtual worlds. Comput. Gr. Forum 33(6), 31–50 (2014)CrossRefGoogle Scholar
  22. 22.
    Stava, O., Pirk, S., Kratt, J., Chen, B., Mech, R., Deussen, O., Benes, B.: Inverse procedural modelling of trees. Comput. Gr. Forum 33(6), 118–131 (2014)CrossRefGoogle Scholar
  23. 23.
    Tropp, J.A., Gilbert, A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Process. 86(3), 572–588 (2006)MATHGoogle Scholar
  25. 25.
    Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in example-based texture synthesis, in Eurographics State of the Art Report (2009)Google Scholar
  26. 26.
    Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. Trans. Vis. Comput. Gr. 13(4), 834–848 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.ViRVIG, Computer Science DepartmentUniversitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.INSA-Lyon, CNRS, LIRISUniv LyonVilleurbanneFrance
  3. 3.CNRS, LIRISUniv Lyon, Université Lyon 2VilleurbanneFrance
  4. 4.CNRS, LIRISUniv Lyon, Université Lyon 1VilleurbanneFrance

Personalised recommendations