Advertisement

The Visual Computer

, Volume 33, Issue 6–8, pp 949–960 | Cite as

Cross section-based hollowing and structural enhancement

  • Weiming Wang
  • Baojun Li
  • Sicheng Qian
  • Yong-Jin Liu
  • Charlie C. L. Wang
  • Ligang Liu
  • Baocai Yin
  • Xiuping Liu
Original Article
  • 363 Downloads

Abstract

Recently, 3D printing has become a powerful tool for personal fabrication. However, the price of some materials is still high which limits its applications in home users. To optimize the volume of the model, while not largely affecting the strength of the objects, researchers propose algorithms to divide the model with different kinds of lightweight structures, such as frame structure, honeycomb cell structure, truss structure, medial axis tree. However, these algorithms are not suitable for the model whose internal space needs to be reused. In addition, the structural strength and static stability of the models, obtained with modern 3D model acquirement methods, are not guaranteed. In consequence, some models are too fragile to print and cannot be survived in daily usage, handling, and transportation or cannot stand in a stable. To handle the mentioned problems, an algorithm system is proposed based on cross sections in this work. The structural weak cross sections are enhanced, and structural strong cross sections are adaptively hollowed to meet a given structural strength, static stability, printability, etc., while the material usage is minimized. The proposed algorithm system has been tested on several typical 3D models. The experimental results demonstrate the effectiveness and practicability of our system.

Keywords

3D printing Cross section Adaptive hollowing Structural enhancement 

Notes

Acknowledgements

We would like to thank the reviewers for their detailed comments and suggestions which greatly improved the manuscript. The research leading to these results has received funding from China Postdoctoral Science Foundation (2016M601308), the One Hundred Talent Project of the Chinese Academy of Sciences, Fundamental Research Fund (DUT16RC(3)061), National Natural Science Foundation of China (61370143, 61432003, 61661130156, 61672482, 11626253, 11472073 ), Hong Kong RGC GRF (14207414), and Royal Society-Newton Advanced Fellowship (NA150431).

References

  1. 1.
    Bächer, M., Bickel, B., James, D.L., Pfister, H.: Fabricating articulated characters from skinned meshes. ACM Trans. Graph. (TOG) 31(4), 47 (2012)CrossRefGoogle Scholar
  2. 2.
    Bächer, M., Whiting, E., Bickel, B., Sorkine-Hornung, O.: Spin-it: optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (TOG) 33(4), 96 (2014)CrossRefGoogle Scholar
  3. 3.
    Cacciola, F.: 2D straight skeleton and polygon offsetting. In: CGAL User and Reference Manual, 4.2 edn. CGAL Editorial Board (2013)Google Scholar
  4. 4.
    Ceylan, D., Li, W., Mitra, N.J., Agrawala, M., Pauly, M.: Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. (TOG) 32(6), 186 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Wang, C.C.: Uniform offsetting of polygonal model based on layered depth-normal images. Comput.-Aided Des. 43(1), 31–46 (2011)CrossRefGoogle Scholar
  6. 6.
    Cura: 3d printing software—cura. https://ultimaker.com/en/products/cura-software, year = 2016
  7. 7.
    Dumas, J., Hergel, J., Lefebvre, S.: Bridging the gap: automated steady scaffoldings for 3d printing. ACM Trans. Graph. (TOG) 33(4), 98 (2014)CrossRefGoogle Scholar
  8. 8.
    Fu, H., Cohen-Or, D., Dror, G., Sheffer, A.: Upright orientation of man-made objects. In: ACM Transactions on Graphics (TOG), vol. 27, p. 42. ACM (2008)Google Scholar
  9. 9.
    Gottschalk, S., Lin, M.C., Manocha, D.: Obbtree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 171–180. ACM (1996)Google Scholar
  10. 10.
    Hildebrand, K., Bickel, B., Alexa, M.: Orthogonal slicing for additive manufacturing. Comput. Graph. 37(6), 669–675 (2013)CrossRefGoogle Scholar
  11. 11.
    Hoffmann, C.M.: Geometric and Solid Modeling (1989)Google Scholar
  12. 12.
    Kim, S.J., Lee, D.Y., Yang, M.Y.: Offset triangular mesh using the multiple normal vectors of a vertex. Comput.-Aided Des. Appl. 1(1–4), 285–291 (2004)CrossRefGoogle Scholar
  13. 13.
    Liu, S., Wang, C.C.: Fast intersection-free offset surface generation from freeform models with triangular meshes. IEEE Trans. Autom. Sci. Eng. 8(2), 347–360 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., Chen, B.: Build-to-last: strength to weight 3d printed objects. ACM Trans. Graph. (TOG) 33(4), 97 (2014)Google Scholar
  15. 15.
    Makerbot: Rapid prototyping and 3D printing. http://www.makerbot.com/ (2012)
  16. 16.
    Makerware: 3d printing software—makerware. http://www.makerbot.com/blog/2013/12/09/makerbot-makerware-2-4-1-release, year = 2016
  17. 17.
    Meyers, D., Skinner, S., Sloan, K.: Surfaces from contours. ACM Trans. Graph. (TOG) 11(3), 228–258 (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Musialski, P., Auzinger, T., Birsak, M., Wimmer, M., Kobbelt, L.: Reduced-order shape optimization using offset surfaces. ACM Trans. Graph. 34(4), 102 (2015)CrossRefzbMATHGoogle Scholar
  19. 19.
    Musialski, P., Hafner, C., Rist, F., Birsak, M., Wimmer, M., Kobbelt, L.: Non-linear shape optimization using local subspace projections. ACM Trans. Graph. 35(4) (2016)Google Scholar
  20. 20.
    Nocedal, J., Wright, S.: Numerical optimization. Springer, New York (2006)zbMATHGoogle Scholar
  21. 21.
    Pintus, R., Gobbetti, E., Cignoni, P., Scopigno, R.: Shape enhancement for rapid prototyping. Vis. Comput. 26(6–8), 831–840 (2010)CrossRefGoogle Scholar
  22. 22.
    Porumbescu, S.D., Budge, B., Feng, L., Joy, K.I.: Shell maps. ACM Trans. Graph. 24(3), 626–633 (2005). doi: 10.1145/1073204.1073239 CrossRefGoogle Scholar
  23. 23.
    Prévost, R., Whiting, E., Lefebvre, S., Sorkine-Hornung, O.: Make it stand: balancing shapes for 3d fabrication. ACM Trans. Graph. (TOG) 32(4), 81 (2013)CrossRefzbMATHGoogle Scholar
  24. 24.
    e Sá, A.M., Mello, V.M., Echavarria, K.R., Covill, D.: Adaptive voids. Vis. Comput. 31(6–8), 799–808 (2015)Google Scholar
  25. 25.
    Schmidt, R., Umetani, N.: Branching support structures for 3d printing. In: ACM SIGGRAPH 2014 Studio, p. 9. ACM (2014)Google Scholar
  26. 26.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)Google Scholar
  27. 27.
    Stava, O., Vanek, J., Benes, B., Carr, N., Měch, R.: Stress relief: improving structural strength of 3D printable objects. ACM Transactions on Graphics (Proc. SIGGRAPH) 31(4), 48:1–11 (2012)Google Scholar
  28. 28.
    Sun, T., Zheng, C., Zhang, Y., Yin, C., Zheng, C., Zhou, K., Yue, Y., Smith, B., Batty, C., Xu, Z., et al.: Computational design of twisty joints and puzzles. ACM Trans. Graph. (TOG) 34(4), 101 (2015)CrossRefGoogle Scholar
  29. 29.
    Umetani, N., Schmidt, R.: Cross-sectional structural analysis for 3d printing optimization. SIGGRAPH Asia 5, 1–4 (2013)Google Scholar
  30. 30.
    Vanek, J., Galicia, J., Benes, B.: Clever support: efficient support structure generation for digital fabrication. In: Computer Graphics Forum, vol. 33, pp. 117–125. Wiley Online Library (2014)Google Scholar
  31. 31.
    Vanek, J., Galicia, J., Benes, B., Měch, R., Carr, N., Stava, O., Miller, G.: Packmerger: a 3d print volume optimizer. Comput. Graph. Forum 33(6), 322–332 (2014)CrossRefGoogle Scholar
  32. 32.
    Wang, C.C., Manocha, D.: Gpu-based offset surface computation using point samples. Comput.-Aided Des. 45(2), 321–330 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, L., Whiting, E.: Buoyancy optimization for computational fabrication. In: Computer Graphics Forum, vol. 35, pp. 49–58. Wiley Online Library (2016)Google Scholar
  34. 34.
    Wang, W., Chao, H., Tong, J., Yang, Z., Tong, X., Li, H., Liu, X., Liu, L.: Saliency-preserving slicing optimization for effective 3d printing. In: Computer Graphics Forum, vol. 34, pp. 148–160. Wiley Online Library (2015)Google Scholar
  35. 35.
    Wang, W., Liu, X., Liu, L.: Upright orientation of 3d shapes via tensor rank minimization. J. Mech. Sci. Technol. 28(7), 2469–2477 (2014)CrossRefGoogle Scholar
  36. 36.
    Wang, W., Wang, T.Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., Liu, X.: Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. Graph. (TOG) 32(6), 177 (2013)Google Scholar
  37. 37.
    Wang, W.M., Zanni, C., Kobbelt, L.: Improved surface quality in 3d printing by optimizing the printing direction. In: Computer Graphics Forum, vol. 35, pp. 59–70. Wiley Online Library (2016)Google Scholar
  38. 38.
    Xie, Y., Xu, W., Yang, Y., Guo, X., Zhou, K.: Agile structural analysis for fabrication-aware shape editing. Comput. Aided Geom. Des. 35, 163–179 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Xu, W., Li, W., Liu, L.: Skeleton-sectional structural analysis for 3d printing. J. Comput. Sci. Technol. (In press) 31(3) (2016)Google Scholar
  40. 40.
    Yamanaka, D., Suzuki, H., Ohtake, Y.: Density aware shape modeling to control mass properties of 3d printed objects. In: SIGGRAPH Asia 2014 Technical Briefs, p. 7. ACM (2014)Google Scholar
  41. 41.
    Zhang, X., Le, X., Wu, Z., Whiting, E., Wang, C.C.L.: Data-driven bending elasticity design by shell thickness. Comput. Graph. Forum 35(5), 157–166 (2016)CrossRefGoogle Scholar
  42. 42.
    Zhang, X., Xia, Y., Wang, J., Yang, Z., Tu, C., Wang, W.: Medial axis treełan internal supporting structure for 3d printing. Comput. Aided Geom. Des. 35, 149–162 (2015)Google Scholar
  43. 43.
    Zhao, H., Xu, W., Zhou, K., Yang, Y., Jin, X., Wu, H.: Stress-constrained thickness optimization for shell object fabrication. In: Computer Graphics Forum. Wiley Online Library (2016)Google Scholar
  44. 44.
    Zhou, Q., Panetta, J., Zorin, D.: Worst-case structural analysis. ACM Trans. Graph. (TOG) 32(4), 137 (2013)zbMATHGoogle Scholar
  45. 45.
    Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., Guo, B.: Motion-guided mechanical toy modeling. ACM Trans. Graph. 31(6), 127 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Weiming Wang
    • 1
  • Baojun Li
    • 1
  • Sicheng Qian
    • 1
  • Yong-Jin Liu
    • 2
  • Charlie C. L. Wang
    • 3
  • Ligang Liu
    • 4
  • Baocai Yin
    • 1
  • Xiuping Liu
    • 1
  1. 1.Dalian University of TechnologyDalianChina
  2. 2.Tsinghua UniversityBeijingChina
  3. 3.Delft University of TechnologyDelftNetherlands
  4. 4.University of Science and Technology of ChinaHefeiChina

Personalised recommendations