Robust cost function for optimizing chamfer masks
- 102 Downloads
Abstract
Chamfering, a mask-driven technique, refers to a process of propagating local distances over an image to estimate a reference metric. Performance of the technique depends on the design of chamfer masks using cost functions. To date, most scholars have been using a mean absolute error and a mean squared error to formulate optimization problems for estimating weights in the chamfer masks. However, studies have shown that these optimization functions endure some potential weaknesses, including biasedness and sensitivity to outliers. Motivated by the weaknesses, the present work proposes an alternative difference function, RLog, that is unbiased, symmetrical, and robust. RLog takes the absolute logarithm of the relative accuracy of the estimated distance to compute optimal chamfer weights. Also, we have proposed an algorithm to map entries of the designed real-valued chamfer masks into integers. Analytical and experimental results demonstrate that chamfering based on our weights generate polygons and distance maps with lower errors. Methods and results of our work may be useful in robotics to address the matching problem.
Keywords
Chamfering Euclidean Mean absolute error OptimizationNotes
Acknowledgements
Funding was provided by China Postdoctoral Science Foundation.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no competing interests.
References
- 1.Song, C., Pang, Z., Jing, X., Xiao, C.: Distance field guided L_1-median skeleton extraction. Vis. Comput. 1–13 (2016). doi: 10.1007/s00371-016-1331-z
- 2.Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recognit. Lett. 76, 3–12 (2016)CrossRefGoogle Scholar
- 3.Coeurjolly, D., Montanvert, A.: Optimal separable algorithms to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension. arXiv:0705.3343 (2007)
- 4.Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)CrossRefGoogle Scholar
- 5.Bailey, D.G.: An efficient Euclidean distance transform. In: International Workshop on Combinatorial Image Analysis, pp. 394–408. Springer (2004). doi: 10.1007/978-3-540-30503-3_28
- 6.Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time Euclidean distance transform algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 529–533 (1995)CrossRefGoogle Scholar
- 7.Zhang, H., Xu, M., Zhuo, L., Havyarimana, V.: A novel optimization framework for salient object detection. Vis. Comput. 32, 31–41 (2016)CrossRefGoogle Scholar
- 8.Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D shape deformation using nonlinear least squares optimization. Vis. Comput. 22(9–11), 653–660 (2006)CrossRefGoogle Scholar
- 9.Ding, S., Sheng, B., Xie, Z., Ma, L.: Intrinsic image estimation using near-L_0 sparse optimization. Vis. Comput. 33, 1–15 (2016). doi: 10.1007/s00371-015-1205-9
- 10.Muñoz, A., Gutierrez, D., Serón, F.J.: Optimization techniques for curved path computing. Vis. Comput. 23(7), 493–502 (2007)CrossRefGoogle Scholar
- 11.Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26, 98–117 (2009)CrossRefGoogle Scholar
- 12.Tofallis, C.: A better measure of relative prediction accuracy for model selection and model estimation. J. Oper. Res. Soc. 66(8), 1352–1362 (2015)CrossRefGoogle Scholar
- 13.Butt, M.A., Maragos, P.: Optimum design of chamfer distance transforms. IEEE Trans. Image Process. 7(10), 1477–1484 (1998)CrossRefGoogle Scholar
- 14.Grevera, G.J.: Distance transform algorithms and their implementation and evaluation. In: Deformable Models , pp. 33–60. Springer (2007). doi: 10.1007/978-0-387-68413-0_2
- 15.Liu, W., Jiang, H., Bai, X., Tan, G., Wang, C., Liu, W., Cai, K.: Distance transform-based skeleton extraction and its applications in sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(9), 1763–1772 (2013)CrossRefGoogle Scholar
- 16.Xu, D., Li, H., Zhang, Y.: Fast and accurate calculation of protein depth by Euclidean distance transform. In: Research in Computational Molecular Biology, pp. 304–316. Springer (2013). doi: 10.1007/978-3-642-37195-0_30
- 17.Mishchenko, Y.: A fast algorithm for computation of discrete Euclidean distance transform in three or more dimensions on vector processing architectures. Signal Image Video Process. 9, 19–27 (2015)CrossRefGoogle Scholar
- 18.Salvi, D., Zheng, K., Zhou, Y., Wang, S.: Distance transform based active contour approach for document image rectification. In: Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on IEEE , pp. 757–764 (2015)Google Scholar
- 19.Elizondo-Leal, J.C., Parra-González, E.F., Ramírez-Torres, J.G.: The exact Euclidean distance transform: a new algorithm for universal path planning. Int. J. Adv. Robot. Syst. 10, 266 (2013)CrossRefGoogle Scholar
- 20.Linnér, E., Strand, R.: Anti-aliased Euclidean distance transform on 3D sampling lattices. In: Discrete Geometry for Computer Imagery, pp. 88–98. Springer (2014). doi: 10.1007/978-3-319-09955-2_8
- 21.Dong, J., Sun, C., Yang, W.: An improved method for oriented chamfer matching. In: Intelligence Science and Big Data Engineering, pp. 875–879. Springer (2013)Google Scholar
- 22.Tzionas, D., Gall, J.: A comparison of directional distances for hand pose estimation. In: Pattern Recognition, pp. 131–141. Springer (2013)Google Scholar
- 23.Kaliamoorthi, P., Kakarala, R.: Directional chamfer matching in 2.5 dimensions. IEEE Signal Process Lett 20(12), 1151–1154 (2013)CrossRefGoogle Scholar
- 24.Nguyen, D.T.: A novel chamfer template matching method using variational mean field. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2425–2432. IEEE (2014)Google Scholar
- 25.Paglieroni, D.W.: Distance transforms: Properties and machine vision applications. CVGIP Graph. Models Image Process. 54, 56–74 (1992)CrossRefGoogle Scholar
- 26.Ma, T., Yang, X., Latecki, L.J.: Boosting chamfer matching by learning chamfer distance normalization. In: Computer Vision–ECCV 2010, pp. 450–463. Springer (2010). doi: 10.1007/978-3-642-15555-0_33
- 27.Thiel, E., Montanvert, A.: Shape splitting from medial lines using the 3–4 chamfer distance. In: Visual Form, pp. 537–546. Springer (1992). doi: 10.1007/978-1-4899-0715-8_51
- 28.Cuisenaire, O., Macq, B.: Fast Euclidean distance transformation by propagation using multiple neighborhoods. Comput. Vis. Image Underst. 76(2), 163–172 (1999)CrossRefGoogle Scholar
- 29.Saito, T., Toriwaki, J.I.: New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognit. 27(11), 1551–1565 (1994)CrossRefGoogle Scholar
- 30.Shih, F.Y., Wu, Y.T.: Fast Euclidean distance transformation in two scans using a 3\(\times \) 3 neighborhood. Comput. Vis. Image Underst. 93(2), 195–205 (2004)CrossRefGoogle Scholar
- 31.Verwer, B.J.: Local distances for distance transformations in two and three dimensions. Pattern Recognit. Lett. 12(11), 671–682 (1991)CrossRefGoogle Scholar
- 32.De Myttenaere, A., Golden, B., Le Grand, B., Rossi, F.: Mean absolute percentage error for regression models. Neurocomputing 192, 38–48 (2016)CrossRefGoogle Scholar
- 33.Franses, P.H.: A note on the mean absolute scaled error. Int. J. Forecast. 32, 20–22 (2016)CrossRefGoogle Scholar
- 34.Majidpour, M., Qiu, C., Chu, P., Pota, H.R., Gadh, R.: Forecasting the EV charging load based on customer profile or station measurement? Appl. Energy 163, 134–141 (2016)CrossRefGoogle Scholar
- 35.Foss, T., Stensrud, E., Kitchenham, B., Myrtveit, I.: A simulation study of the model evaluation criterion MMRE. IEEE Trans. Softw. Eng. 29(11), 985–995 (2003)CrossRefGoogle Scholar