Reflection reprojection using temporal coherence

  • 299 Accesses


A powerful approach for rendering high-quality images at low cost is to exploit temporal coherence by projecting already computed images into a novel view. However, conventional temporal coherence projection methods assume pixel values remain almost unchanged from frame to frame, which does not extend well to reflection rendering. We present a novel projection method to reuse reflections from adjacent frames. A novel reflection reprojection method is introduced to establish the mapping of reflections between individual frames. By reusing the information from the reference frame, our method can reduce the overall workloads of reflection computation, which makes rendering efficiently.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Angel, E.: Interactive computer graphics. Image 1, 2 (2007)

  2. 2.

    Carr, N.A., Hoberock, J., Crane, K., Hart, J.C.: Fast GPU ray tracing of dynamic meshes using geometry images. In: Proceedings of Graphics Interface 2006, pp. 203–209. Canadian Information Processing Society, Mississauga (2006)

  3. 3.

    de Macedo, D.V., Rodrigues, M.A.F.: Real-time dynamic reflections for realistic rendering of 3D scenes. Vis. Comput. 1–10 (2016). doi:10.1007/s00371-016-1335-8

  4. 4.

    Estalella, P., Martin, I., Drettakis, G., Tost, D.: A GPU-driven algorithm for accurate interactive reflections on curved objects. In: Eurographics Symposium on Rendering, p. 7. ACM, New York (2006)

  5. 5.

    Foley, T., Sugerman, J.: KD-tree acceleration structures for a GPU raytracer. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 15–22. ACM, New York (2005)

  6. 6.

    Ganestam, P., Doggett, M.: Real-time multiply recursive reflections and refractions using hybrid rendering. Vis. Comput. 31(10), 1395–1403 (2015)

  7. 7.

    Glassner, A.S.: An Introduction to Ray Tracing. Elsevier, Amsterdam (1989)

  8. 8.

    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM, New York (1996)

  9. 9.

    Green, P., Kautz, J., Durand, F.: Efficient reflectance and visibility approximations for environment map rendering. In: Computer Graphics Forum, vol. 26, pp. 495–502. Wiley Online Library, Hoboken (2007)

  10. 10.

    Heidrich, W., Lensch, H., Cohen, M.F., Seidel, H.-P.: Light field techniques for reflections and refractions. In: Proceedings of the 10th Eurographics Conference on Rendering, pp. 187–196. Eurographics Association, Aire-la-Ville (1999)

  11. 11.

    Kautz, J., McCool, M.D.: Approximation of glossy reflection with prefiltered environment maps. In: Proceedings of the Graphics Interface 2000 Conference, vol. 2000, Montréal, Québec, Canada, pp. 119–126 (2000)

  12. 12.

    Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., Aila, T.: Incremental instant radiosity for real-time indirect illumination. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, pp. 277–286. Eurographics Association, Aire-la-Ville (2007)

  13. 13.

    Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM, New York (1996)

  14. 14.

    Li, S., Fan, Z., Yin, X., Mueller, K., Kaufman, A.E., Gu, X.: Real-time reflection using ray tracing with geometry field. In: Eurographics 06, Short papers, pp. 29–32 (2006)

  15. 15.

    Lochmann, G., Reinert, B., Ritschel, T., Mller, S., Seidel, H.-P.: Real-time reflective and refractive novel-view synthesis. In: VMV, Darmstadt. Germany, pp. 9–16. Eurographics Association, Aire-la-Ville (2014)

  16. 16.

    Mattausch, O., Scherzer, D., Wimmer, M.: High-quality screen-space ambient occlusion using temporal coherence. In: Computer Graphics Forum, vol. 29, pp. 2492–2503. Wiley Online Library, Hoboken (2010)

  17. 17.

    McGuire, M., Mara, M.: Efficient GPU screen-space ray tracing. J. Comput. Graph. Tech. (JCGT) 3(4), 73–85 (2014)

  18. 18.

    Nehab, D., Sander, P.V., Lawrence, J., Tatarchuk, N., Isidoro, J.R.: Accelerating real-time shading with reverse reprojection caching. In: Aila, T., Sega, M. (eds.) Graphics Hardware, vol. 41. Eurographics Association Aire-la-Ville, Switzerland, pp. 61–62 (2007)

  19. 19.

    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level partition of unity implicits. In: ACM SIGGRAPH 2005 Courses, p. 173. ACM, New York (2005)

  20. 20.

    Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., et al.: Optix: a general purpose ray tracing engine. ACM Trans. Graph. (TOG) 29(4), 66 (2010)

  21. 21.

    Popescu, V., Mei, C., Dauble, J., Sacks, E.: Reflected-scene impostors for realistic reflections at interactive rates. In Computer Graphics Forum, vol. 25, pp. 313–322. Wiley Online Library, Hoboken (2006)

  22. 22.

    Popescu, V., Sacks, E., Mei, C.: Sample-based cameras for feed forward reflection rendering. IEEE Trans. Vis. Comput. Graph. 12(6), 1590–1600 (2006)

  23. 23.

    Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P.: Ray tracing on programmable graphics hardware. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 703–712. ACM, New York (2002)

  24. 24.

    Scherzer, D., Jeschke, S., Wimmer, M.: Pixel-correct shadow maps with temporal reprojection and shadow test confidence. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, pp. 45–50. Eurographics Association, Aire-la-Ville (2007)

  25. 25.

    Scherzer, D., Schwärzler, M., Mattausch, O., Wimmer, M.: Real-time soft shadows using temporal coherence. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnacao, M., Silva, C., Coming, D. (eds.) Advances in Visual Computing, pp. 13–24. Springer, Berlin (2009)

  26. 26.

    Schwärzler, M., Luksch, C., Scherzer, D., Wimmer, M.: Fast percentage closer soft shadows using temporal coherence. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 79–86. ACM, New York (2013)

  27. 27.

    Sitthi-amorn, P., Lawrence, J., Yang, L., Sander, P.V., Nehab, D.: An improved shading cache for modern GPUs. In: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pp. 95–101. Eurographics Association, Aire-la-Ville (2008)

  28. 28.

    Sitthi-amorn, P., Lawrence, J., Yang, L., Sander, P.V., Nehab, D., Xi, J.: Automated reprojection-based pixel shader optimization. In: ACM Transactions on Graphics (TOG), vol. 27, p. 127. ACM, New York (2008)

  29. 29.

    Szirmay-Kalos, L., Aszódi, B., Lazányi, I., Premecz, M.: Approximate ray-tracing on the gpu with distance impostors. In: Computer Graphics Forum, vol. 24, pp. 695–704. Wiley Online Library, Hoboken (2005)

  30. 30.

    Taguchi, Y., Agrawal, A., Ramalingam, S., Veeraraghavan, A.: Axial light field for curved mirrors: reflect your perspective, widen your view. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 499–506. IEEE, Washington (2010)

  31. 31.

    Vardis, K., Vasilakis, A.A., Papaioannou, G.: A multiview and multilayer approach for interactive ray tracing. In: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 171–178. ACM, New York (2016)

  32. 32.

    Wald, I., Slusallek, P., Benthin, C., Wagner, M.: Interactive rendering with coherent ray tracing. In: Computer Graphics Forum, vol. 20, pp. 153–165. Wiley Online Library, Hoboken (2001)

  33. 33.

    Wang, L., Xie, N., Ke, W., Popescu, V.: Second-order feed-forward rendering for specular and glossy reflections. IEEE Trans. Vis. Comput. Graph. 20(9), 1316–1329 (2014)

  34. 34.

    Whitted, T.: An improved illumination model for shaded display. In ACM SIGGRAPH Computer Graphics, vol. 13, p. 14. ACM, New York (1979)

  35. 35.

    Yoon, S.-E., Lauterbach, C., Manocha, D.: R-lods: fast lod-based ray tracing of massive models. Vis. Comput. 22(9–11), 772–784 (2006)

  36. 36.

    Yu, J., Yang, J., McMillan, L.: Real-time reflection mapping with parallax. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 133–138. ACM, New York (2005)

  37. 37.

    Yu, X., Wang, R., Yu, J.: Interactive glossy reflections using gpu-based ray tracing with adaptive lod. In: Computer Graphics Forum, vol. 27, pp. 1987–1996. Wiley Online Library, Hoboken (2008)

Download references


This work was supported in part by the National Natural Science Foundation of China through Projects 61272349, 61190121 and 61190125, by the National High Technology Research and Development Program of China through 863 Program No. 2013AA01A604. Naiwen Xie gratefully acknowledges financial support from China Scholarship Council (CSC) through No. 201506020037.

Author information

Correspondence to Naiwen Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 48452 KB)

Supplementary material 1 (avi 48452 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, N., Wang, L. & Dutré, P. Reflection reprojection using temporal coherence. Vis Comput 34, 517–529 (2018) doi:10.1007/s00371-017-1358-9

Download citation


  • Specular reflections
  • View-dependent rendering
  • Temporal coherence rendering