The Visual Computer

, Volume 34, Issue 4, pp 461–471 | Cite as

Physics-inspired approach to realistic and stable water spray with narrowband air particles

  • Jong-Hyun Kim
  • Wook Kim
  • Jung LeeEmail author
Original Article


We propose an efficient and physics-inspired method for producing water spray effects by modeling air particles within a narrowband of the water surface in particle-based water simulation. In the real world, water and air continuously interact with each other around free surfaces, and this phenomenon is commonly observed in waterfalls or in rough sea waves. Due to the small volume of water spray, the interfaces between water and air become vague, and the interactions between water and air lead to strong vortex phenomena. To express these phenomena, we propose the generation of narrowband air cells in particle-based water simulations and the expression of water spray effects by creating and evolving air particles in narrowband air cells. We guarantee the robustness of the simulation by solving the drifting problem that occurs when the number of adjacent air particles is insufficient. Experiments convincingly demonstrate that the proposed approach is efficient and easy to use while delivering high-quality results. We produce efficient water spray effects from coarse simulation as an independent post-process that can be applied to most particle-based fluid solvers.


Water spray Vortex effects Narrowband air particle Particle-based fluids 



This research was supported by a Hallym University Research Fund (HRF-201609-008), Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (IITP-2016-R7518-16-1028), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2011602).

Supplementary material

Supplementary material 1 (avi 137587 KB)


  1. 1.
    Angelidis, A., Neyret, F.: Simulation of smoke based on vortex filament primitives. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 87–96 (2005)Google Scholar
  2. 2.
    Angelidis, A., Neyret, F., Singh, K., Nowrouzezahrai, D.: A controllable, fast and stable basis for vortex based smoke simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32 (2006)Google Scholar
  3. 3.
    Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)Google Scholar
  4. 4.
    Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. In: ACM SIGGRAPH (2007)Google Scholar
  5. 5.
    Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191(2), 448–475 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dobashi, Y., Matsuda, Y., Yamamoto, T., Nishita, T.: A fast simulation method using overlapping grids for interactions between smoke and rigid objects. Comput. Graph. Forum 27(2), 477–486 (2008)CrossRefGoogle Scholar
  7. 7.
    Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: ACM SIGGRAPH, pp. 15–22 (2001)Google Scholar
  8. 8.
    He, S., Wong, H.C., Pang, W.M., Wong, U.H.: Real-time smokesimulation with improved turbulence by spatial adaptive vorticityconfinement. Comput. Anim. Virtual Worlds 22(2–3), 107–114 (2011)CrossRefGoogle Scholar
  9. 9.
    He, X., Wang, H., Zhang, F., Wang, H., Wang, G., Zhou, K.: Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Trans. Graph. 34(1), 7 (2014)CrossRefGoogle Scholar
  10. 10.
    Hong, J.M., Shinar, T., Fedkiw, R.: Wrinkled flames and cellular patterns. In: ACM SIGGRAPH (2007)Google Scholar
  11. 11.
    Ihmsen, M., Akinci, N., Akinci, G., Teschner, M.: Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28(6–8), 669–677 (2012)CrossRefGoogle Scholar
  12. 12.
    Jang, T., Blanco i Ribera, R., Bae, J., Noh, J.: Simulating SPH fluid with multi-level vorticity. Int. J. Virtual Real. 10(1), 21 (2011)Google Scholar
  13. 13.
    Kim, D., Lee, S.W., young Song, O., Ko, H.S.: Baroclinic turbulence with varying density and temperature. IEEE Trans. Vis. Comput. Graph. 18(9), 1488–1495 (2012)CrossRefGoogle Scholar
  14. 14.
    Kim, D., Song, O.Y., Ko, H.S.: Stretching and wiggling liquids. In: ACM SIGGRAPH Asia, pp. 120:1–120:7 (2009)Google Scholar
  15. 15.
    Kim, T., Thürey, N., James, D., Gross, M.: Wavelet turbulence for fluid simulation. In: ACM SIGGRAPH, pp. 50:1–50:6 (2008)Google Scholar
  16. 16.
    Klingner, B.M., Feldman, B.E., Chentanez, N., O’Brien, J.F.: Fluid animation with dynamic meshes. In: ACM SIGGRAPH, pp. 820–825 (2006)Google Scholar
  17. 17.
    Lee, H.Y., Hong, J.M., Kim, C.H.: Simulation of swirling bubbly water using bubble particles. Vis. Comput. 25(5–7), 707–712 (2009)CrossRefGoogle Scholar
  18. 18.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: ACM SIGGRAPH, pp. 457–462 (2004)Google Scholar
  19. 19.
    Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:12 (2013)CrossRefzbMATHGoogle Scholar
  20. 20.
    Mercier, O., Beauchemin, C., Thuerey, N., Kim, T., Nowrouzezahrai, D.: Surface turbulence for particle-based liquid simulations. ACM Trans. Graph. 34(6), 10 (2015)CrossRefGoogle Scholar
  21. 21.
    Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., Hussaini, M.Y.: Physics based boiling simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’06, pp. 317–324 (2006)Google Scholar
  22. 22.
    Morris, J.P.: Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 33(3), 333–353 (2000)CrossRefzbMATHGoogle Scholar
  23. 23.
    Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005)Google Scholar
  24. 24.
    NextLimit: RealFlow. (2015)
  25. 25.
    Nielsen, M.B., Osterby, O.: A two-continua approach to Eulerian simulation of water spray. ACM Trans. Graph. 32(4), 67:1–67:10 (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    Ott, F., Schnetter, E.: A modified SPH approach for fluids with large density differences. arXiv preprint arXiv:physics/0303112 (2003)
  27. 27.
    Park, S.I., Kim, M.J.: Vortex fluid for gaseous phenomena. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 261–270 (2005)Google Scholar
  28. 28.
    Pfaff, T., Thuerey, N., Cohen, J., Tariq, S., Gross, M.: Scalable fluid simulation using anisotropic turbulence particles. In: ACM SIGGRAPH Asia, pp. 174:1–174:8 (2010)Google Scholar
  29. 29.
    Pfaff, T., Thuerey, N., Gross, M.: Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31(4), 112:1–112:8 (2012)CrossRefGoogle Scholar
  30. 30.
    Pfaff, T., Thuerey, N., Selle, A., Gross, M.: Synthetic turbulence using artificial boundary layers. In: ACM SIGGRAPH Asia, pp. 121:1–121:10 (2009)Google Scholar
  31. 31.
    Prakash, M., Cleary, P.W., Pyo, S.H., Woolard, F.: A new approach to boiling simulation using a discrete particle based method. Comput. Graph. 53, 118–126 (2015)CrossRefGoogle Scholar
  32. 32.
    Ren, B., Li, C., Yan, X., Lin, M.C., Bonet, J., Hu, S.M.: Multiple-fluid sph simulation using a mixture model. ACM Trans. Graph. 33(5), 171:1–171:11 (2014)CrossRefzbMATHGoogle Scholar
  33. 33.
    RFX: Naiad. (2012)
  34. 34.
    Schechter, H., Bridson, R.: Evolving sub-grid turbulence for smoke animation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–7 (2008)Google Scholar
  35. 35.
    Schechter, H., Bridson, R.: Ghost SPH for animating water. ACM Trans. Graph. 31(4), 61 (2012)CrossRefGoogle Scholar
  36. 36.
    Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. In: ACM SIGGRAPH, pp. 910–914 (2005)Google Scholar
  37. 37.
  38. 38.
    Solenthaler, B., Pajarola, R.: Density contrast SPH interfaces. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 211–218 (2008)Google Scholar
  39. 39.
    Stam, J.: Stable fluids. In: ACM SIGGRAPH, pp. 121–128 (1999)Google Scholar
  40. 40.
    Tartakovsky, A.M., Meakin, P.: A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability. J. Comput. Phys. 207(2), 610–624 (2005)CrossRefzbMATHGoogle Scholar
  41. 41.
    Vines, M., Houston, B., Lang, J., Lee, W.S.: Vortical inviscid flows with two-way solid–fluid coupling. IEEE Trans. Vis. Comput. Graph. 20(2), 303–315 (2014)CrossRefGoogle Scholar
  42. 42.
    Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase sph simulation for interactive fluids and solids. ACM Trans. Graph. 35(4), 79 (2016)Google Scholar
  43. 43.
    Yang, B., Jin, X.: Turbulence synthesis for shape-controllable smoke animation. Comput. Anim. Virtual Worlds 25(3–4), 465–472 (2014)CrossRefGoogle Scholar
  44. 44.
    Yang, T., Chang, J., Ren, B., Lin, M.C., Zhang, J.J., Hu, S.M.: Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graph. 34(6), 201:1–201:11 (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Kangnam UniversityYonginSouth Korea
  2. 2.Korea UniversitySeoulSouth Korea
  3. 3.Hallym UniversityChuncheonSouth Korea

Personalised recommendations