Advertisement

Space–time image layout

  • 246 Accesses

Abstract

Cameras are now ubiquitous in our lives. A given activity is often captured by multiple people from different viewpoints resulting in a sizable collection of photograph footage. We present a method that effectively organizes this spatiotemporal content. Given an unorganized collection of photographs taken by a number of photographers, capturing some dynamic event at a number of time steps, we would like to organize the collection into a space–time table. The organization is an embedding of the photographs into clusters that preserve the viewpoint and time order. Our method relies on a self-organizing map (SOM), which is a neural network that embeds the training data (the set of images) into a discrete domain. We introduce BiSOM, which is a variation of SOM that considers two features (space and time) rather than a single one, to layout the given photograph collection into a table. We demonstrate our method on several challenging datasets, using different space and time descriptors.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Notes

  1. 1.

    The silhouette index \(-1 \le {s_i}\left( j \right) \le 1\) provides an indication for how well the element i lies within the cluster j. A value of \({s_i}\left( j \right) \) close to positive one means that the datum i is appropriately clustered in the cluster j, conversely, a value close to negative one means that the datum i is unlikely to belong to cluster j.

  2. 2.

    The Rand index \(0\le R_I \le 1\) is a measure of the similarity between two clustering results, with 0 indicating that the two data clusters do not agree on any pair of points and 1 indicating that the data clusters are exactly the same.

  3. 3.

    Datasets boats and slides in the courtesy of Dekel et al. [9]

  4. 4.

    The swapping distance is defined to be the minimum number of swaps, or transpositions, of two adjacent clusters that transforms one permutation into another.

References

  1. 1.

    Aoki, T., Aoyagi, T.: Self-organizing maps with asymmetric neighborhood function. Neural Comput. 19(9), 2515–2535 (2007)

  2. 2.

    Averbuch-Elor, H., Cohen-Or, D.: Ringit: Ring-ordering casual photos of a temporal event. ACM Trans. Graph. 35(1), 33 (2015)

  3. 3.

    Bashyal, S., Venayagamoorthy, G.K.: Recognition of facial expressions using gabor wavelets and learning vector quantization. Eng. Appl. Artif. Intell. 21(7), 1056–1064 (2008)

  4. 4.

    Brahmachari, A.S., Sarkar, S.: View clustering of wide-baseline n-views for photo tourism. In: Graphics, Patterns and Images (Sibgrapi), 2011 24th SIBGRAPI Conference on, pp. 157–164. IEEE (2011)

  5. 5.

    Caspi, Y., Irani, M.: Spatio-temporal alignment of sequences. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1409–1424 (2002)

  6. 6.

    Chen, L.P., Liu, Y.G., Huang, Z.X., Shi, Y.T.: An improved som algorithm and its application to color feature extraction. Neural Comput. Appl. 24(7–8), 1759–1770 (2014)

  7. 7.

    Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. ACM Trans. Algorithms. (TALG) 3(1), 2 (2007)

  8. 8.

    Moses, Y., Avidan, S., et al.: Space-time tradeoffs in photo sequencing. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 977–984 (2013)

  9. 9.

    Dekel, T., Moses, Y., Avidan, S.: Photo sequencing. Int. J. Comput. Vis. 110(3), 275–289 (2014)

  10. 10.

    Dexter, E., Pérez, P., Laptev, I.: Multi-view synchronization of human actions and dynamic scenes. In: BMVC, pp. 1–11. Citeseer (2009)

  11. 11.

    Endo, M., Ueno, M., Tanabe, T.: A clustering method using hierarchical self-organizing maps. J. VLSI Signal Process. Syst. Signal Image Video Technol. 32(1–2), 105–118 (2002)

  12. 12.

    Fried, O., DiVerdi, S., Halber, M., Sizikova, E., Finkelstein, A.: IsoMatch: Creating informative grid layouts. In: Computer Graphics Forum, vol. 34, no 2, pp. 155–166. Wiley (2015)

  13. 13.

    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 1434–1441. IEEE (2010)

  14. 14.

    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

  15. 15.

    Kiang, M.Y.: Extending the kohonen self-organizing map networks for clustering analysis. Comput. Stat. Data Anal. 38(2), 161–180 (2001)

  16. 16.

    Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

  17. 17.

    Lee, J.A., Verleysen, M.: Self-organizing maps with recursive neighborhood adaptation. Neural Netw. 15(8), 993–1003 (2002)

  18. 18.

    Lefebvre, G., Laurent, C., Ros, J., Garcia, C.: Supervised image classification by som activity map comparison. In: Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, vol. 2, pp. 728–731. IEEE (2006)

  19. 19.

    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

  20. 20.

    Mauro, M., Riemenschneider, H., Van Gool, L., Leonardi, R., Brescia, I.: Overlapping camera clustering through dominant sets for scalable 3D reconstruction. In: BMVC, vol. 1, no 2, p. 3 (2013)

  21. 21.

    Moehrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Improving the usability of hierarchical representations for interactively labeling large image data sets. In: Human-Computer Interaction. Design and Development Approaches, pp. 618–627. Springer, Berlin (2011)

  22. 22.

    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

  23. 23.

    Ong, S.H., Yeo, N., Lee, K., Venkatesh, Y., Cao, D.: Segmentation of color images using a two-stage self-organizing network. Image Vis. Comput. 20(4), 279–289 (2002)

  24. 24.

    Quadrianto, N., Song, L., Smola, A.J.: Kernelized sorting. In: Advances in neural information processing systems, pp. 1289–1296 (2009)

  25. 25.

    Reinert, B., Ritschel, T., Seidel, H.P.: Interactive by-example design of artistic packing layouts. ACM Trans. Graph. (TOG) 32(6), 218 (2013)

  26. 26.

    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

  27. 27.

    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

  28. 28.

    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

  29. 29.

    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: ACM transactions on graphics (TOG), vol. 25, no 3, pp. 835–846. ACM (2006)

  30. 30.

    Strong, G., Gong, M.: Self-sorting map: An efficient algorithm for presenting multimedia data in structured layouts. IEEE Trans. Multimedia. 16(4), 1045–1058 (2014)

  31. 31.

    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(2), 137–154 (1992)

  32. 32.

    Zhou, H., Yuan, Y., Shi, C.: Object tracking using sift features and mean shift. Comput. Vis. Image Underst. 113(3), 345–352 (2009)

Download references

Author information

Correspondence to Shahar Ben-Ezra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 220892 KB)

Supplementary material 1 (mp4 220892 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben-Ezra, S., Cohen-Or, D. Space–time image layout. Vis Comput 34, 417–430 (2018) doi:10.1007/s00371-016-1347-4

Download citation

Keywords

  • Image organization
  • Spatial ordering
  • Temporal ordering
  • Self-organizing maps