The Visual Computer

, Volume 34, Issue 3, pp 347–358 | Cite as

Animating pictures of water scenes using video retrieval

  • Makoto OkabeEmail author
  • Yoshinori Dobashi
  • Ken Anjyo
Original Article


We present a system to quickly and easily create an animation of water scenes in a single image. Our method relies on a database of videos of water scenes and video retrieval technique. Given an input image, alpha masks specifying regions of interest, and sketches specifying flow directions, our system first retrieves appropriate video candidates from the database and create the candidate animations for each region of interest as the composite of the input image and the retrieved videos: this process spends less than one minute by taking advantage of parallel distributed processing. Our system then allows the user to interactively control the speed of the desired animation and select the appropriate animation. After selecting the animation for all the regions, the resulting animation is completed. Finally, the user optionally applies a texture synthesis algorithm to recover the appearance of the input image. We demonstrate that our system allows the user to create a variety of animations of water scenes.


Single image Interactive design Video database Video analysis/synthesis Fluid animation Texture analysis/synthesis 



We would like to thank the anonymous reviewers for their insightful and constructive comments. Many thanks also go to Ayumi Kimura for discussions and encouragements. This work was supported by JSPS KAKENHI Grant Numbers JP15H05924 and JP25730071. This work was supported by Japan Science and Technology Agency, CREST. This work was partially supported by the Joint Research Program (Short-term Collaborative Research) of the Institute of Mathematics for Industry, Kyushu University. Yoshinori Dobashi was partially supported by UEI Research.

Supplementary material

Supplementary material 1 (mp4 222714 KB)


  1. 1.
    Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Texture mixing and texture movie synthesis using statistical learning. IEEE Trans. Vis. Comput. Graph. 7(2), 120–135 (2001). doi: 10.1109/2945.928165 CrossRefGoogle Scholar
  2. 2.
    Bhat, K.S., Seitz, S.M., Hodgins, J.K., Khosla, P.K.: Flow-based video synthesis and editing. ACM Trans. Graph. 23(3), 360–363 (2004). doi: 10.1145/1015706.1015729 CrossRefGoogle Scholar
  3. 3.
    Chuang, Y.Y., Goldman, D.B., Zheng, K.C., Curless, B., Salesin, D.H., Szeliski, R.: Animating pictures with stochastic motion textures. In: Proc. SIGGRAPH, vol. 2005, pp. 853–860 (2005)Google Scholar
  4. 4.
    Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Gui, Y., Ma, L., Yin, C., Z, C.: Preserving global features of fluid animation from a single image using video examples. J. Zhejian Univ. Sci. C 13(7), 510–519 (2012)CrossRefGoogle Scholar
  6. 6.
    Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Trans. Graph. 26(3) (2007). doi: 10.1145/1275808.1276382
  7. 7.
    Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proc. SIGGRAPH ’95, pp. 229–238 (1995)Google Scholar
  8. 8.
    Hornung, A., Dekkers, E., Kobbelt, L.: Character animation from 2d pictures and 3d motion data. ACM Trans. Graph. 26(1), 1 (2007)CrossRefGoogle Scholar
  9. 9.
    Horry, Y., Anjyo, K., Arai, K.: Tour into the picture: using a spidery mesh interface to make animation from a single image. In: Proc. SIGGRAPH ’97, pp. 225–232 (1997)Google Scholar
  10. 10.
    Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005)CrossRefGoogle Scholar
  11. 11.
    Joshi, N., Mehta, S., Drucker, S., Stollnitz, E., Hoppe, H., Uyttendaele, M., Cohen, M.: Cliplets: Juxtaposing still and dynamic imagery. In: Proc. of UIST ’12, pp. 251–260 (2012)Google Scholar
  12. 12.
    Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. In: Proc. SIGGRAPH 2005, pp. 795–802 (2005)Google Scholar
  13. 13.
    Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. ACM Trans. Graph. 33(4), 149:1–149:11 (2014)CrossRefGoogle Scholar
  14. 14.
    Lalonde, J.F., Efros, A.A., Narasimhan, S.G.: Webcam clip art: appearance and illuminant transfer from time-lapse sequences. ACM Trans. Graph. 28(5), 131:1–131:10 (2009)CrossRefGoogle Scholar
  15. 15.
    Liao, Z., Joshi, N., Hoppe, H.: Automated video looping with progressive dynamism. ACM Trans. Graph. 32(4), 77:1–77:10 (2013)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lin, Z., Wang, L., Wang, Y., Kang, S.B., Fang, T.: High resolution animated scenes from stills. IEEE Trans. Vis. Comput. Graph. 13(3), 562–568 (2007)CrossRefGoogle Scholar
  17. 17.
    Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: Sift flow: dense correspondence across different scenes. In: Proc. of ECCV ’08, pp. 28–42 (2008)Google Scholar
  18. 18.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  19. 19.
    Ma, C., Wei, L.Y., Guo, B., Zhou, K.: Motion field texture synthesis. ACM Trans. Graph. 28(5), 1–8 (2009)CrossRefGoogle Scholar
  20. 20.
    Okabe, M., Anjyo, K., Igarashi, T., Seidel, H.P.: Animating pictures of fluid using video examples. Comput. Graph. Forum 28(2), 677–686 (2009)CrossRefGoogle Scholar
  21. 21.
    Okabe, M., Anjyo, K., Onai, R.: Creating fluid animation from a single image using video database. Comput. Graph. Forum 30(7), 1973–1982 (2011)CrossRefGoogle Scholar
  22. 22.
    Prashnani, E., Noorkami, M., Vaquero, D., Sen, P.: A phase-based approach for animating images using video examples. Comput. Graph. Forum (2016). doi: 10.1111/cgf.12940
  23. 23.
    Praun, E., Finkelstein, A., Hoppe, H.: Lapped textures. In: Proc. SIGGRAPH, vol. 2000, pp. 465–470 (2000)Google Scholar
  24. 24.
    Ramanan, D.: Learning to parse images of articulated bodies. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 1129–1136. MIT Press (2007).
  25. 25.
    Schödl, A., Szeliski, R., Salesin, D.H., Essa, I.: Video textures. In: Proc. SIGGRAPH, vol. 2000, pp. 489–498 (2000)Google Scholar
  26. 26.
    Shih, Y., Paris, S., Durand, F., Freeman, W.T.: Data-driven hallucination of different times of day from a single outdoor photo. ACM Trans. Graph. 32(6), 200:1–200:11 (2013)CrossRefGoogle Scholar
  27. 27.
    Sun, M., Su, H., Savarese, S., Fei-Fei, L.: A multi-view probabilistic model for 3d object classes. pp. 1247 –1254 (2009)Google Scholar
  28. 28.
    Wang, Y., Zhu, S.C.: Modeling textured motion: Particle, wave and sketch. In: ICCV2003, pp. 213–220 (2003)Google Scholar
  29. 29.
    Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proc. SIGGRAPH, vol. 2000, pp. 479–488 (2000)Google Scholar
  30. 30.
    Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: Proc. of CVPR, vol. 2010, pp. 2464–2471 (2010)Google Scholar
  31. 31.
    Xu, X., Wan, L., Liu, X., Wong, T.T., Wang, L., Leung, C.S.: Animating animal motion from still. ACM Trans. Graph. 27(5), 117:1–117:8 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.5th Engineering Bldg., Room 619Shizuoka UniversityNaka-ku, HamamatsuJapan
  2. 2.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  3. 3.OLM Digital IncSetagayaJapan

Personalised recommendations