The Visual Computer

, Volume 34, Issue 1, pp 105–116 | Cite as

Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method

  • Junjun PanEmail author
  • Shizeng Yan
  • Hong Qin
  • Aimin Hao
Original Article


This paper systematically describes a real-time dissection approach for digital organs by strong coupling of geometric metaballs and physically correct mesh-free method. For organ geometry, we employ a novel hybrid model comprising both inner metaballs and high-resolution surface mesh with texture information. Through the use of metaballs, the organ interior is geometrically simplified via a set of overlapping spheres with different radii. As for digital organ’s physical representation, we systematically articulate a hybrid framework to interlink metaballs with physics-driven mesh-free method based on moving least squares (MLS) shape functions. MLS approach enables the direct and rapid transition from metaball geometry to local nodal formulations, which afford potential-energy-correct physical modeling and simulation over continuum domain with physical accuracy. For soft tissue dissection, the nature of our MLS-driven mesh-free method also facilitates adaptive topology modification and cutting surface reconstruction. To expedite simulation towards real-time performance, at the numerical level, we resort to position-based dynamics to simplify physical deformation to drive metaballs participating in the mesh-free formulation. Since nodal points participating in the physical process exist temporarily only in localized regions adjacent to the cutting path, our method could warrant accurate cutting surface without sacrificing real-time computational efficiency. This hybrid dissection technique has already been integrated into a VR-based laparoscopic surgery simulator with a haptic interface.


Metaballs Mesh-free method Digital organ Physics-based deformation Dissection 



This work was supported by the National Natural Science Foundation of China (Nos. 61402025, 61532002 and 61672149), the National Science Foundation of USA (Nos. IIS-0949467, 1047715, and 1049448), and the Fundamental Research Funds for the Central Universities.

Supplementary material

Supplementary material 1 (wmv 12435 KB)


  1. 1.
  2. 2.
  3. 3.
    Wu, J., Dick, C., Westerman, R.: Physically-based simulation of cuts in deformable bodies: a survey. Comput. Graph. Forum 34, 161–187 (2015)CrossRefGoogle Scholar
  4. 4.
    Wei, Y., Cotin, S., Dequidt, J.: A (near) real-time simulation method of aneurysm coil embolization. Aneurysm 8(29), 223–248 (2012)Google Scholar
  5. 5.
    Gianluca, D.N., Melchiorri, C.: Surgery simulations and haptic feedback: a new approach for local interaction using implicit surfaces. International Conference on Applied Bionics and Biomechanics, Venice, October, 23–28 (2010)Google Scholar
  6. 6.
    Pan, J., Zhao, C., Zhao, X., Hao, A., Qin, H.: Metaballs-based physical modeling and deformation of organs for virtual surgery. Vis. Comput. 31(6), 947–957 (2015)CrossRefGoogle Scholar
  7. 7.
    Wu, J., Dick, C., Westermann, R.: Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis. Comput. 29(6–8), 739–749 (2013)CrossRefGoogle Scholar
  8. 8.
    Cueto, E., Chinesta, F.: Real time simulation for computational surgery: a review. Adv. Model. Simul. Eng. Sci. 1(11), 1–18 (2014)Google Scholar
  9. 9.
    Jeřábková, L., Bousquet, G., Barbier, S., Faure, F., Allard, J.: Volumetric modeling and interactive cutting of deformable bodies. Prog. Biophys. Mol. Biol. 103(2–3), 217–224 (2010)CrossRefGoogle Scholar
  10. 10.
    Pan, J., Chang, J., Yang, X., Liang, H., Zhang, J., Qureshi, T., Howell, R., Hickish, T.: Virtual reality training and assessment in laparoscopic rectum surgery. Int. J. Med. Robot. Comput. Assist. Surg. 11(2), 194–209 (2015)CrossRefGoogle Scholar
  11. 11.
    Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. 32(6), 1–7 (2013)Google Scholar
  12. 12.
    Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 141–151 (2004)Google Scholar
  13. 13.
    Jones, B., Ward, S., Jallepalli, A., Perenia, J., Bargteil, A.W.: Deformation embedding for point-based elastoplastic simulation. ACM Trans. Graph. 33(2), 1–9 (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    Steinemann, D., Miguel, A.O., Gross, M.: Fast arbitrary splitting of deforming objects. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Sep 10, pp. 63–72 (2006)Google Scholar
  15. 15.
    Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting cubes: a fast and robust technique for virtual cutting. Vis. Comput. 25(3), 227–289 (2009)CrossRefGoogle Scholar
  16. 16.
    Pauly, M., Keiser, R., Adams, B., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24(3), 957–964 (2005)CrossRefGoogle Scholar
  17. 17.
    Adams, B., Wicke, M.: Meshless Approximation Methods and Applications in Physics Based Modeling and Animation. Eurographics 2009, Tutorial (2009)Google Scholar
  18. 18.
    Bender, J., Müller, M., Teschner, M., Macklin, M.: A survey on position based simulation methods in computer graphics. Comput. Graph. Forum 33(6), 228–251 (2014)CrossRefGoogle Scholar
  19. 19.
    Pan, J., Bai, J., Zhao, X., Hao, A., Qin, H.: Real-time haptic manipulation and cutting of hybrid soft tissue models by extended position-based dynamics. Comput. Animat. Virtual Worlds 6, 321–335 (2015)CrossRefGoogle Scholar
  20. 20.
    Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-rime applications. ACM Trans. Graph. 33(4), 1–10 (2014)CrossRefGoogle Scholar
  21. 21.
    France, L., Angelidis, A., Meseure, P., Cani, M.P., Lenoir, J., Faure, F., Chaillou, C.: Implicit Representations of the Human Intestines for Surgery Simulation. ESAIM: Proceedings, November 12, pp. 42–47 (2002)Google Scholar
  22. 22.
    Rivera-Rovelo, J., Bayro-Corrochano, E.: Medical image segmentation, volume representation and registration using spheres in the geometric algebra framework. Pattern Recognit. 40, 171–188 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Bradshaw, G., Sullivan, C.O.: Sphere-tree construction using dynamic medial axis approximation. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33–40 (2002)Google Scholar
  24. 24.
    Sorkine-Hornung, O., Cohen-Or, D., Lipman, Y., Alexa, M., Roessl, C., Seidel, H.-P.: Laplacian Surface Editing. Eurographics Symposium on Geometry Processing, pp. 1–10 (2004)Google Scholar
  25. 25.
    Pan, J., Yang, X., Xie, X., Willis, P., Zhang, J.: Automatic rigging for animation characters with 3D silhouette. Comput. Animat. Virtual Worlds 20(2–3), 121–131 (2009)CrossRefGoogle Scholar
  26. 26.
    Eberhard, P., Gaugele, T.: Simulation of cutting processes using mesh-free Lagrangian particle methods. Comput. Mech. 51(3), 261–278 (2013)CrossRefzbMATHGoogle Scholar
  27. 27.
    Chung, T.J.: Applied Continuum Mechanics. Cambridge University Press, NY (1996)zbMATHGoogle Scholar
  28. 28.
    Kallmann, M., Bieri, H., Thalmann, D.: Fully dynamic constrained delaunay triangulations. In: Kallmann, M., Bieri, H., Thalmann, D (eds.) Geometric Modeling for Scientific Visualization (Part of the series Mathematics and Visualization). Springer, Berlin, Heidelberg, pp. 241–257 (2011)Google Scholar
  29. 29.
    Li, X., Guo, X., Wang, H., He, Y., Gu, X., Qin, H.: Meshless harmonic volumetric mapping using fundamental solution methods. IEEE Trans. Autom. Sci. Eng. 6(3), 409–422 (2009)CrossRefGoogle Scholar
  30. 30.
    Yang, C., Li, S., Wang, L., Hao, A., Qin, H.: Real-time physical deformation and cutting of heterogeneous objects via hybrid coupling of meshless approach and finite element method. Comput. Animat. Virtual Worlds 25(3–4), 423–435 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Virtual Reality Technology and SystemsBeihang UniversityBeijingChina
  2. 2.Department of Computer ScienceStony Brook University (SUNY Stony Brook)Stony BrookUSA

Personalised recommendations