Advertisement

The Visual Computer

, Volume 33, Issue 4, pp 429–442 | Cite as

LiverDefense: how to employ a tower defense game as a customisable research tool

  • Julia BrichEmail author
  • Katja Rogers
  • Julian Frommel
  • Martin Weidhaas
  • Adrian Brückner
  • Sarah Mirabile
  • Tamara Dorn
  • Valentin Riemer
  • Claudia Schrader
  • Michael Weber
Original Article

Abstract

In game-related research, it is often necessary to create different versions of a game prototype and gather information about players. To make this possible even for non-programmers, we present LiverDefense, an educational Tower Defense game about the basic functions of the human liver, which can be used as a customisable research tool. LiverDefense can be customised via human-readable XML files both in its degree of difficulty and the content of Likert scale questionnaires to be presented to the player. As a proof of concept, LiverDefense has been successfully employed in a psychological study focused on exploring the effect of perceived control over gameplay on players’ emotions. We report on the analysis of this study with regard to enjoyment and frustration and the resulting insights on using LiverDefense as a customisable research tool.

Keywords

Educational games Game design Bio-medical education Questionnaire integration Customisable games 

Notes

Acknowledgments

This work was conducted within the project “Serious Games–Skill Advancement Through Adaptive Systems” being funded by the Carl Zeiss Foundation and as part of the project “EffIS–Efficient and Interactive Studying” (FKZ: 16OH21032) funded since 2014 by the BMBF (German Federal Ministry of Education and Research) within the program “Aufstieg durch Bildung: Offene Hoch-schulen”.

References

  1. 1.
    Abt, C.C.: Serious games. University Press of America, Lanham (1987)Google Scholar
  2. 2.
    Australian Consortium for Social and Political Research Incorporated: queXML—an open source, XML, multi-mode questionnaire description toolkit. http://quexml.sourceforge.net/
  3. 3.
  4. 4.
    Avery, P., Togelius, J., Alistar, E., Van Leeuwen, R.P.: Computational intelligence and tower defence games. In: Evolutionary Computation (CEC), 2011 IEEE Congress, pp. 1084–1091. IEEE (2011)Google Scholar
  5. 5.
    Baranowski, T., Buday, R., Thompson, D.I., Baranowski, J.: Playing for real: video games and stories for health-related behavior change. Am. J. Prev. Med. 34(1), 74–82 (2008)CrossRefGoogle Scholar
  6. 6.
    Bassilious, E.: Numeracy in adolescents with type 1 diabetes: assessment and gaming intervention–a pilot project. Ph.D. thesis, University of Toronto (2013)Google Scholar
  7. 7.
    Bassilious, E., DeChamplain, A., McCabe, I., Stephan, M., Kapralos, B., Mahmud, F., Dubrowski, A.: Power defense: a video game for improving diabetes numeracy. In: Games Innovation Conference (IGIC), 2011 IEEE International, pp. 124–125. IEEE (2011)Google Scholar
  8. 8.
    Blender Foundation: Blender. http://www.blender.org/
  9. 9.
    Bode, C., Bode, J.: Ernährungsmedizin: nach dem Curriculum Ernährungsmedizin der Bundesärztekammer (German), chap. Protektive Wirkungen und Missbrauch von Alkohol, pp. 516–538. Georg Thieme Verlag (2004)Google Scholar
  10. 10.
    Botha, C., Preim, B., Kaufman, A., Takahashi, S., Ynnerman, A.: From individual to population: Challenges in medical visualization. In: Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.) Scientific visualization, mathematics and visualization, pp. 265–282. Springer, London (2014). doi: 10.1007/978-1-4471-6497-5_23 Google Scholar
  11. 11.
    Brich, J., Rogers, K., Frommel, J., Weidhaas, M., Brückner, A., Mirabile, S., Dorn, T., Riemer, V., Schrader, C., Weber, M.: Liverdefense: using a tower defense game as a customisable research tool. In: Games and Virtual Worlds for Serious Applications (VS-Games), 2015 7th International Conference, pp. 1–8 (2015). doi: 10.1109/VS-GAMES.2015.7295779
  12. 12.
    Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86(3), 490–503 (1998). doi: 10.1109/5.662874 CrossRefGoogle Scholar
  13. 13.
    Charles, D., Black, M.: Dynamic player modeling: a framework for player-centered digital games. In: Proc. of the International Conference on Computer Games: Artificial Intelligence, Design and Education, pp. 29–35 (2004)Google Scholar
  14. 14.
    Clements, P., Pesner, J., Shepherd, J.: The teaching of immunology using educational: gaming paradigms. In: Proceedings of the 47th Annual Southeast Regional Conference, p. 21. ACM (2009)Google Scholar
  15. 15.
    Csikszentmihalyi, M.: Flow: the psychology of optimal experience, vol. 41. HarperPerennial, New York (1991)Google Scholar
  16. 16.
    Dickey, M.D.: Engaging by design: how engagement strategies in popular computer and video games can inform instructional design. Educ. Technol. Res. Dev. 53(2), 67–83 (2005)CrossRefGoogle Scholar
  17. 17.
    DiPietro, M., Ferdig, R.E., Boyer, J., Black, E.W.: Towards a framework for understanding electronic educational gaming. J. Educ. Multimed. Hypermed. 16(3), 225–248 (2007)Google Scholar
  18. 18.
    Falah, J., Charissis, V., Khan, S., Chan, W., Alfalah, S.F., Harrison, D.K.: Development and evaluation of virtual reality medical training system for anatomy education. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Systems in Science and Information 2014, Studies in Computational Intelligence, vol. 591, pp. 369–383. Springer International Publishing (2015). doi: 10.1007/978-3-319-14654-6_23
  19. 19.
    Friese, K., Mylonas, I., Schulze, A.: Infektionserkrankungen der Schwangeren und des Neugeborenen (German). Springer, Berlin (2013)Google Scholar
  20. 20.
    Frommel, J., Rogers, K., Brich, J., Besserer, D., Bradatsch, L., Ortinau, I., Schabenberger, R., Riemer, V., Schrader, C., Weber, M.: Integrated Questionnaires: maintaining presence in game environments for self-reported data acquisition. In: Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’15, pp. 359–368. ACM, New York (2015). doi: 10.1145/2793107.2793130
  21. 21.
    Gilleade, K.M., Dix, A.: Using frustration in the design of adaptive videogames. In: Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE ’04, pp. 228–232. ACM, New York (2004). doi: 10.1145/1067343.1067372
  22. 22.
    Grodal, T.: Video games and the pleasures of control. In: Grodal, T., Dolf, Z., Vorderer, P. (eds.) Media entertainment: the psychology of its appeal, pp 197–213. Lawrence Erlbaum Associates Publishers, Mahwah (2000)Google Scholar
  23. 23.
    Hung, A., Wu, T., Hunter, P., Mithraratne, K.: A framework for generating anatomically detailed subject-specific human facial models for biomechanical simulations. Vis. Comput. 31(5), 527–539 (2015). doi: 10.1007/s00371-014-0945-2 CrossRefGoogle Scholar
  24. 24.
    IBM: SPSS—predictive analytics software and solutions. http://www.ibm.com/spss
  25. 25.
    Johnson, D., Nacke, L.E., Wyeth, P.: All about that base: differing player experiences in video game genres and the unique case of MOBA games. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pp. 2265–2274. ACM, New York (2015). doi: 10.1145/2702123.2702447
  26. 26.
    Li, M.C., Tsai, C.C.: Game-based learning in science education: a review of relevant research. J. Sci. Educ. Technol. 22(6), 877–898 (2013)CrossRefGoogle Scholar
  27. 27.
    Liehr, H.: Leber, Galle, Bauchspeicheldrüse: Wirksame Hilfe bei Beschwerden (German). Trias (2002)Google Scholar
  28. 28.
    Likert, R.: A technique for the measurement of attitudes. Archives of Psychology. The Science Press, New York (1932)Google Scholar
  29. 29.
    LimeSurvey: Lime Survey—The Open Source Survey Application. https://www.limesurvey.org
  30. 30.
    Liu, S., Ding, W.: An approach to evaluation component design in building serious game. In: Learning by Playing. Game-based Education System Design and Development, pp. 141–148. Springer, Berlin (2009)Google Scholar
  31. 31.
    Luboz, V., Kyaw-Tun, J., Sen, S., Kneebone, R., Dickinson, R., Kitney, R., Bello, F.: Real-time stent and balloon simulation for stenosis treatment. Vis. Comput. 30(3), 341–349 (2014). doi: 10.1007/s00371-013-0859-4 CrossRefGoogle Scholar
  32. 32.
    Lucas, K., Sherry, J.L.: Sex differences in video game play: a communication-based explanation. Commun. Res. 31(5), 499–523 (2004)CrossRefGoogle Scholar
  33. 33.
    Malone, T.W.: Toward a theory of intrinsically motivating instruction. Cogn. Sci. 5(4), 333–369 (1981)CrossRefGoogle Scholar
  34. 34.
    Malone, T.W., Lepper, M.R.: Making learning fun: a taxonomy of intrinsic motivations for learning. Aptit. Learn. Instr. 3(1987), 223–253 (1987)Google Scholar
  35. 35.
    Mangold, K.: Educating a new generation: teaching baby boomer faculty about millennial students. Nurse Educ. 32(1), 21–23 (2007)CrossRefGoogle Scholar
  36. 36.
    McCallum, S.: Gamification and serious games for personalized health. Stud. Health Technol. Inform. 177, 85–96 (2012)Google Scholar
  37. 37.
    Meyer, D.K., Turner, J.C.: Re-conceptualizing emotion and motivation to learn in classroom contexts. Educ. Psychol. Rev. 18(4), 377–390 (2006). doi: 10.1007/s10648-006-9032-1 CrossRefGoogle Scholar
  38. 38.
    Michael, D.R., Chen, S.L.: Serious games: Games that educate, train, and inform. Muska & Lipman/Premier-Trade, Mason (2005)Google Scholar
  39. 39.
    Microsoft Corporation: Microsoft Excel—Create order. https://products.office.com/excel
  40. 40.
    Mitgutsch, K., Alvarado, N.: Purposeful by design?: a serious game design assessment framework. In: Proceedings of the International Conference on the foundations of digital games, pp. 121–128. ACM (2012)Google Scholar
  41. 41.
    Nacke, L. E., Drachen, A., Göbel, S.: Methods for evaluating gameplay experience in a serious gaming context. Int. J. Comput. Sci. Sport 9(2), 1–12 (2010)Google Scholar
  42. 42.
    Okuda, Y., Bryson, E.O., DeMaria, S., Jacobson, L., Quinones, J., Shen, B., Levine, A.I.: The utility of simulation in medical education: what is the evidence? Mt. Sinai J. Med. J. Transl. Personal. Med. 76(4), 330–343 (2009)CrossRefGoogle Scholar
  43. 43.
    Pan, J., Zhao, C., Zhao, X., Hao, A., Qin, H.: Metaballs-based physical modeling and deformation of organs for virtual surgery. Vis. Comput. 31(6–8), 947–957 (2015). doi: 10.1007/s00371-015-1106-y CrossRefGoogle Scholar
  44. 44.
    Papastergiou, M.: Exploring the potential of computer and video games for health and physical education: a literature review. Comput. Educ. 53(3), 603–622 (2009)CrossRefGoogle Scholar
  45. 45.
    Paulus, C., Untereiner, L., Courtecuisse, H., Cotin, S., Cazier, D.: Virtual cutting of deformable objects based on efficient topological operations. Vis. Comput. 31(6–8), 831–841 (2015). doi: 10.1007/s00371-015-1123-x CrossRefGoogle Scholar
  46. 46.
    Pekrun, R.: The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educ. Psychol. Rev. 18(4), 315–341 (2006)CrossRefGoogle Scholar
  47. 47.
    Prensky, M.: Computer games and learning: digital game-based learning. Handb. Comput. Game Stud. 18, 97–122 (2005)Google Scholar
  48. 48.
    Rauterberg, M.: About a framework for information and information processing of learning systems. In: ISCO, pp. 54–69 (1995)Google Scholar
  49. 49.
    Riemann, J.F., Fischbach, W., Galle, P., Mössner, J.: Gastroenterologie in Klinik und Praxis: Das komplette Referenzwerk für Klinik und Praxis (German). Thieme (2007, German)Google Scholar
  50. 50.
    Sawyer, B.: From cells to cell processors: the integration of health and video games. Comput. Graph. Appl. IEEE 28(6), 83–85 (2008). doi: 10.1109/MCG.2008.114 CrossRefGoogle Scholar
  51. 51.
    Schrader, C., Brich, J., Frommel, J., Riemer, V., Rogers, K.: Rising to the challenge: an emotion-driven approach towards adaptive serious games (in press). In: Ma, M., Oikonomou, A., Jain, L. (eds.) Serious Games and Edutainment Applications, vol. 2. Springer, London (2016)Google Scholar
  52. 52.
    Schutz, P. A., Pekrun, R. (eds.) Introduction to emotions in education. Emotion in Education, pp 3–10. Elsevier Academic Press, San Diego (2007)Google Scholar
  53. 53.
    Scirra: Construct 2. https://www.scirra.com/construct2
  54. 54.
    Steiner-Welz, S.: Die wichtigsten Körperfunktionen der Menschen (German). Reinhard Welz Vermittlerverlag Mannheim (2005)Google Scholar
  55. 55.
    The Inkscape Project: Inkscape—Draw freely. https://inkscape.org
  56. 56.
    Thompson, J.: Food fight. Tech. rep. (2010)Google Scholar
  57. 57.
    Ullrich, S., Kuhlen, T.: Haptic palpation for medical simulation in virtual environments. Vis. Comput. Graph. IEEE Trans. 18(4), 617–625 (2012). doi: 10.1109/TVCG.2012.46 CrossRefGoogle Scholar
  58. 58.
    Um, E., Plass, J.L., Hayward, E.O., Homer, B.D., et al.: Emotional design in multimedia learning. J. Educ. Psychol. 104(2), 485 (2012)CrossRefGoogle Scholar
  59. 59.
    Unity Technologies: Unity. http://unity3d.com/unity
  60. 60.
    Van Lankveld, G., Spronck, P., Van Den Herik, H.J., Rauterberg, M.: Incongruity-based adaptive game balancing. In: Advances in computer games, pp. 208–220. Springer, Berlin (2010)Google Scholar
  61. 61.
    Vorderer, P., Klimmt, C., Ritterfeld, U.: Enjoyment: at the heart of media entertainment. Commun. Theory 14(4), 388–408 (2004)CrossRefGoogle Scholar
  62. 62.
    Wattanasoontorn, V., Boada, I., García, R., Sbert, M.: Serious games for health. Entertain. Comput. 4(4), 231–247 (2013)CrossRefGoogle Scholar
  63. 63.
    Wouters, P.,Van der Spek, E.D.,VanOostendorp, H.: Current practices in serious game research: a review from a learning outcomes perspective. In: Connolly, T., Stansfield, M., Boyle, L. (eds.) Games-Based Learning Advancements for Multisensory Human Computer Interfaces: Techniques and Effective Practices, pp. 232–250. IGI-Global, Hershey (2009). doi: 10.4018/978-1-60566-360-9.ch014
  64. 64.
    Wu, J., Westermann, R., Dick, C.: A survey of physically based simulation of cuts in deformable bodies. In: Computer Graphics Forum. Wiley Online Library (2015)Google Scholar
  65. 65.
    Xia, P., Lopes, A., Restivo, M.: Virtual reality and haptics for dental surgery: a personal review. Vis. Comput. 29(5), 433–447 (2013). doi: 10.1007/s00371-012-0748-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Julia Brich
    • 1
    Email author
  • Katja Rogers
    • 1
  • Julian Frommel
    • 1
  • Martin Weidhaas
    • 3
  • Adrian Brückner
    • 3
  • Sarah Mirabile
    • 3
  • Tamara Dorn
    • 3
  • Valentin Riemer
    • 2
  • Claudia Schrader
    • 2
  • Michael Weber
    • 1
  1. 1.Institute of Media InformaticsUlm UniversityUlmGermany
  2. 2.Institute of Psychology and Education, Serious Games GroupUlm UniversityUlmGermany
  3. 3.Ulm UniversityUlmGermany

Personalised recommendations