The Visual Computer

, Volume 33, Issue 4, pp 471–488 | Cite as

Designed emotions: challenges and potential methodologies for improving multisensory cues to enhance user engagement in immersive systems

  • Ernst Kruijff
  • Alexander Marquardt
  • Christina Trepkowski
  • Jonas Schild
  • André Hinkenjann
Original Article

Abstract

In this article, we report on challenges and potential methodologies to support the design and validation of multisensory techniques. Such techniques can be used for enhancing engagement in immersive systems. Yet, designing effective techniques requires careful analysis of the effect of different cues on user engagement. The level of engagement spans the general level of presence in an environment, as well as the specific emotional response to a set trigger. Yet, measuring and analyzing the actual effect of cues is hard as it spans numerous interconnected issues. In this article, we identify the different challenges and potential validation methodologies that affect the analysis of multisensory cues on user engagement. In doing so, we provide an overview of issues and potential validation directions as an entry point for further research. The various challenges are supported by lessons learned from a pilot study, which focused on reflecting the initial validation methodology by analyzing the effect of different stimuli on user engagement.

Keywords

Virtual reality Immersion Games Presence Multisensory cues 3D user interfaces User engagement Challenges Methodologies 

References

  1. 1.
    Beckhaus, S., Kruijff, E.: Unconventional human computer interfaces. ACM SIGGRAPH 2004 course notes (2004)Google Scholar
  2. 2.
    Mine, M.: Towards virtual reality for the masses. In: Proc. Work. Virtual Environ. 2003—EGVE ’03. ACM Press, New York, pp. 11–17 (2003)Google Scholar
  3. 3.
    Schell, J., Shochet, J.: Designing interactive theme park rides. IEEE Comput. Graph Appl. 21, 11–13 (2001)CrossRefGoogle Scholar
  4. 4.
    Park, C., Ko, H., Kim, I.-J., et al.: The making of Kyongju VR theatre. In: Proceedings of the IEEE Virtual Reality Conference, p. 269 (2002)Google Scholar
  5. 5.
    Biocca, F., Levy, M.R.: Communication in the age of virtual reality. L. Erlbaum Associates Inc. (1995)Google Scholar
  6. 6.
    Held, R.M., Durlach, N.I.: Telepresence. Presence Teleoper. Virtual Environ. 1, 109–112 (1992)CrossRefGoogle Scholar
  7. 7.
    Rizzo, A., Kim, G.J.: A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence Teleoper. Virtual Environ. 14, 119–146 (2005)CrossRefGoogle Scholar
  8. 8.
    Dinh, H., Walker, N., Song, C., et al.: Evaluating the importance of multi-sensory input on learning and the sense of presence in virtual environments. In: Proceedings of the IEEE Virtual Reality, pp. 222–228 (1999)Google Scholar
  9. 9.
    Goldstein, E.: Sensation and Perception, 5th edn. Brooks Cole, Monterey (2002)Google Scholar
  10. 10.
    Meehan, M., Insko, B., Whitton, M., Brooks, F.P.: Physiological measures of presence in stressful virtual environments. ACM Trans. Graph. 21, 645–652 (2002)CrossRefGoogle Scholar
  11. 11.
    Slater, M., Brogni, A., Steed, A.: Physiological responses to breaks in presence: a pilot study. In: The 6th Annual International Workshop on Presence (2003)Google Scholar
  12. 12.
    Dillon, C., Keogh, E., Freeman, J., Davidoff, J.: Presence: is your heart in it. In: Proceedings of the 4th Annual International Workshop on Presence (2001)Google Scholar
  13. 13.
    Jang, E.-H., Park, B.-J., Park, M.-S., et al.: Analysis of physiological signals for recognition of boredom, pain, and surprise emotions. J. Physiol. Anthropol. 34, 25 (2015)CrossRefGoogle Scholar
  14. 14.
    Morgan, R., Heise, D.: Structure of emotions. Soc. Psychol. Q 51, 19–31 (1988)CrossRefGoogle Scholar
  15. 15.
    Sykes, J., Brown, S.: Affective gaming—measuring emotion through the gamepad. In: Proceedings of the 2003 ACM Conference on Human Factors in Computing Systems (CHI 2003) (2003), pp. 732–733Google Scholar
  16. 16.
    Shiota, M., Keltner, D., Mossman, A.: The nature of awe: elicitors, appraisals, and effects on self-concept. Cogn. Emot. 21, 944–963 (2007)CrossRefGoogle Scholar
  17. 17.
    Rudd, M., Vohs, K.D., Aaker, J.: Awe expands people’s perception of time, alters decision making, and enhances well-being. Psychol. Sci. 23, 1130–6 (2012)CrossRefGoogle Scholar
  18. 18.
    Ark, W., Dryer, D., Lu, D.: The emotion mouse. In: Proceedings HCI International ’99, pp. 818–823 (1999)Google Scholar
  19. 19.
    Picard, R.: Affective Computing. MIT Press, Cambridge (1997)CrossRefGoogle Scholar
  20. 20.
    Calvo, R., D’Mello, S.: Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1, 18–37 (2010)CrossRefGoogle Scholar
  21. 21.
    D’mello, S.K., Kory, J.: A review and meta-analysis of multimodal affect detection systems. ACM Comput. Surv. 47, 1–36 (2015)Google Scholar
  22. 22.
    O’Brien, H., Toms, E.: Examining the generalizability of the User Engagement Scale (UES) in exploratory search. Inf. Process. Manag. 49, 1092–1107 (2013)CrossRefGoogle Scholar
  23. 23.
    Attfield, S., Kazai, G., Lalmas, M., Piwowarski: Towards a science of user engagement. In: Proceedings of WSDM Work User Modeling for Web Applications (2011)Google Scholar
  24. 24.
    Lehmann, J., Lalmas, M., Yom-Tov, E., Dupret, G.: User modeling, adaptation, and personalization. Information Systems and Applications, incl. Internet/Web, and HCI, vol. 7379. Springer, Berlin (2012)Google Scholar
  25. 25.
    Jacques, R.: Engagement as a design concept for multimedia. Can. J. Educ. Commun. 24, 49–59 (1995)Google Scholar
  26. 26.
    Lalmas, M., O’Brien, H., Yom-Tov, E.: Measuring User Engagement. Morgan & Claypool, San Rafael (2014)Google Scholar
  27. 27.
    Slater, M., Linakis, V., Usoh, M., Kooper, R.: Immersion, presence, and performance in virtual environments: an experiment with tri-dimensional chess. In: Proceedings of the ACM Virtual Reality Software and Technology, pp. 163–172 (1996)Google Scholar
  28. 28.
    Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992)Google Scholar
  29. 29.
    Ryan, R.M., Rigby, C.S., Przybylski, A.: The motivational pull of video games: a self-determination theory approach. Motiv. Emot. 30, 344–360 (2006)CrossRefGoogle Scholar
  30. 30.
    Ijsselsteijn, W., de Kort, Y., Poels, K.: The game experience questionnaire: development of a self-report measure to assess the psychological impact of digital games. Manuscript in PreparationGoogle Scholar
  31. 31.
    Bernhaupt, R.: Evaluating user experience in games. Human–Computer Interaction Series. Springer, London (2010)Google Scholar
  32. 32.
    Lenay, C., Gapenne, O., Hanneton, S., et al.: Sensory substitution: limits and perspectives. In: Hatwell, Y., Streri, A., Gentaz, E. (eds.) Touching for Knowing. John Benjamins Publishing Company, pp. 275–292 (2003)Google Scholar
  33. 33.
    Loomis, J.: Sensory replacement and sensory substitution: overview and prospects for the future. In: Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science, (US NBIC 2002), NSF-DOC Converging Technologies Report, p. 220 (2002)Google Scholar
  34. 34.
    Kruijff, E.: Human-potential driven design of 3D user interfaces. In: Proceedings of the IEEE International Conference on Artificial Reality and Telexistence, pp. 129–136 (2013)Google Scholar
  35. 35.
    Kruijff, E.: Unconventional 3D User Interfaces for Virtual Environments. Graz University of Technology, PhD Thesis (2007)Google Scholar
  36. 36.
    Pulkki, V.: Spatial Sound Generation and Perception by Amplitude Panning Techniques. Helsinki University of Technology, PhD Thesis (2001)Google Scholar
  37. 37.
    Afonso, C., Beckhaus, S.: How to not hit a virtual wall. In: Proceedings of the 6th Audio Mostly Conference: A Conference on Interaction with Sound—AM ’11, pp 101–108. ACM Press, New York (2011)Google Scholar
  38. 38.
    Naer, M., Staadt, O., Gross, M.: Spatialized audio rendering for immersive virtual environments. In: Proceedings of the ACM Symposium on Virtual Reality Software Technology (VRST 2002), pp 65–72. ACM Press, New York (2002)Google Scholar
  39. 39.
    Tsingos, N., Gallo, E., Drettakis, G.: Perceptual audio rendering of complex virtual environments. ACM Trans. Graph. 23, 249 (2004)CrossRefGoogle Scholar
  40. 40.
    Kruijff, E., Pander, A.: Experiences of using shockwaves for haptic sensations. In: Proceedings of 3D User Interface Workshop. IEEE Virtual Reality Conference, pp. 37–42 (2005)Google Scholar
  41. 41.
    Israr, A., Williams, T., Poupyrev, I., et al.: Surround Haptics. In: ACM SIGGRAPH 2011 Emerging Technology—SIGGRAPH ’11, p. 1. ACM Press, New York (2011)Google Scholar
  42. 42.
    Mueller, F., Vetere, F., Gibbs, M., et al.: Balancing exertion experiences. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems—CHI ’12, p. 1853. ACM Press, New York (2012)Google Scholar
  43. 43.
    Kaye, J.: Symbolic Olfactory Display. Massachusetts Institute of Technology, PhD Thesis (1999)Google Scholar
  44. 44.
    Yanagida, Y., Kawato, H., Noma, H., et al.: A nose-tracked, personal olfactory display. In: Proceedings of ACM SIGGRAPH Sketches and Applications (2003)Google Scholar
  45. 45.
    Narumi, T., Nishizaka, S., Kajinami, T., et al.: Augmented reality flavors. In: Proceedings of 2011 Annual Conference on Human Factors in Computing Systems—CHI ’11, p. 93. ACM Press, New York (2011)Google Scholar
  46. 46.
    Ranasinghe, N., Cheok, A., Nakatsu, R., Do, E.: Simulating the sensation of taste for immersive experiences. In: Proceedings of the 2013 ACM International Workshop on Immersive Media Experiences—ImmersiveMe ’13, pp. 29–34. ACM Press, New York (2013)Google Scholar
  47. 47.
    Feng, M., Lindeman, R., Abdel-Moati, H., Lindeman, J.: Haptic ChairIO: A system to study the effect of wind and floor vibration feedback on spatial orientation in VEs. In: Proceedings of IEEE Symposium on 3D User Interfaces, pp. 149–150 (2015)Google Scholar
  48. 48.
    Hülsmann, F., Fröhlich, J., Mattar, N., Wachsmuth, I.: Wind and warmth in virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference—VRIC ’14, pp. 1–8. ACM Press, New York (2014)Google Scholar
  49. 49.
    Wiederhold, B., Jang, D., Kim, S., Wiederhold, M.: Physiological monitoring as an objective tool in virtual reality therapy. Cyberpsychol. Behav. 5, 77 (2002)CrossRefGoogle Scholar
  50. 50.
    Brogni, A., Vinayagamoorthy, V., Steed, A., Slater, M.: Variations in physiological responses of participants during different stages of an immersive virtual environment experiment. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology—VRST ’06, p. 376. ACM Press, New York (2006)Google Scholar
  51. 51.
    Jang, D.P., Kim, I.Y., Nam, S.W., et al.: Analysis of physiological response to two virtual environments: driving and flying simulation. Cyberpsychol. Behav. 5, 11–8 (2002)CrossRefGoogle Scholar
  52. 52.
    Hoffman, H.: Physically touching virtual objects using tactile augmentation enhances the realism of virtual environments. In: Proceedings of the 1998 IEEE Virtual Reality Annual International Symposium. IEEE, pp. 59–63 (1998)Google Scholar
  53. 53.
    Regenbrecht, H., Schubert, T., Friedmann, F.: Measuring the sense of presence and its relations to fear of heights in virtual environments. Int. J. Hum. Comput. Interact. 10, 233–250 (1998)CrossRefGoogle Scholar
  54. 54.
    Shimojo, S., Shams, L.: Sensory modalities are not separate modalities: plasticity and interactions. Curr. Opin. Neurobiol. 11, 505–509 (2001)CrossRefGoogle Scholar
  55. 55.
    Pai, D.: Multisensory interaction: real and virtual. In: Proceedings of the International Symposium on Robotics Research, vol. 15, pp. 489–498. Springer, Berlin (2003)Google Scholar
  56. 56.
    Spence, C., Squire, S.: Multisensory integration: maintaining the perception of synchrony. Curr. Biol. 13, 519–521 (2003)CrossRefGoogle Scholar
  57. 57.
    Weisenberger, J., Poling, G.: Multisensory roughness perception of virtual surfaces: effects of correlated cues. In: Proceedings of the 12th International Symposium on Haptic Interfaces Virtual Environment and Teleoperators Systems, pp. 161–168 (2004)Google Scholar
  58. 58.
    Lindeman, R., Noma, H.: A classification scheme for multi-sensory augmented reality. In: Proceedings of the ACM Virtual Reality Software and Technology, pp. 175–178 (2007)Google Scholar
  59. 59.
    Sutcliffe, A.: Multimedia and Virtual Reality: Designing Multisensory User Interfaces. Psychology Press, New York (2003)Google Scholar
  60. 60.
    Lederman, S., Thorne, G., Jones, B.: Perception of texture by vision and touch: multidimensionality and intersensory integration. J. Exp. Psychol. Hum. Percept. Perform. 12, 169–180 (1986)CrossRefGoogle Scholar
  61. 61.
    Narumi, T., Kajinami, T., Tanikawa, T., Hirose, M.: Meta cookie. In: ACM SIGGRAPH 2010 Emerging Technologies—SIGGRAPH ’10, p. 1. ACM Press, New York (2010)Google Scholar
  62. 62.
    Sekuler, R., Sekuler, A., Lau, R.: Sound alters visual motion perception. Nature 385, 308 (1997)Google Scholar
  63. 63.
    Blake, R., Sobel, K., James, W.: Neural synergy between kinetic vision and touch. Psychol. Sci. 15(6):397–402 (2004)Google Scholar
  64. 64.
    Bresciani, J.-P., Ernst, M., Drewing, K., et al.: Feeling what you hear: auditory signals can modulate tactile tap perception. Exp. Brain Res. 162, 172–180 (2004)CrossRefGoogle Scholar
  65. 65.
    Spence, C.: Just how much of what we taste derives from the sense of smell? Flavour 4, 30 (2015)CrossRefGoogle Scholar
  66. 66.
    Hoggan, E., Kaaresoja, T., Laitinen, P., Brewster, S.: Crossmodal congruence: the look, feel and sound of touchscreen widgets. In: Proceedings of the 10th International Conference on Multimodal Interfaces—IMCI ’08, p. 157. ACM Press, New York (2008)Google Scholar
  67. 67.
    Bell, J., Cooper, K., Kaiser, G., Sheth, S.: Proceedings of the Second International Workshop on Games and Software Engineering: Realizing User Engagement with Game Engineering Techniques (2012)Google Scholar
  68. 68.
    Buchenau, M., Suri, J.F.: Experience prototyping. In: Proceedings of the Conference on Designing Interactive Systems: Processes. Practices, Methods and Techniques—DIS ’00, pp. 424–433. ACM Press, New York (2000)Google Scholar
  69. 69.
    Brown, E., Cairns, P.: A grounded investigation of game immersion. In: Extended Abstracts of the 2004 Conference on Human Factors and Computing Systems—CHI ’04, p. 1297. ACM Press, New York (2004)Google Scholar
  70. 70.
    Dow, S.: Understanding user engagement in immersive and interactive stories (2008)Google Scholar
  71. 71.
    Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Perennial Modern Classics (1990)Google Scholar
  72. 72.
    Sweetser, P., Wyeth, P.: GameFlow. Comput. Entertain. 3, 3 (2005)CrossRefGoogle Scholar
  73. 73.
    Slater, M., Usoh, M., Steed, A.: Depth of presence in virtual environments. Presence Teleoper. Virtual Environ. 3, 130–144 (1994)CrossRefGoogle Scholar
  74. 74.
    McMahan, R.P., Bowman, D.A., Zielinski, D.J., Brady, R.B.: Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans. Vis. Comput. Graph. 18, 626–33 (2012)CrossRefGoogle Scholar
  75. 75.
    Schild, J., Masuch, M.: Formalizing the potential of stereoscopic 3D user experience in interactive entertainment. In: Holliman, N.S., Woods, A.J., Favalora, G.E., Kawai, T. (eds.) IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, p. 93911D (2015)Google Scholar
  76. 76.
    Schild, J., LaViola, JJ., Masuch, M.: Altering gameplay behavior using stereoscopic 3D vision-based video game design. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems—CHI ’14, pp. 207–216. ACM Press, New York (2014)Google Scholar
  77. 77.
    Barfield, W., Zeltzer, D., Sheridan, T., Slater, M.: Presence and performance within virtual environments. In: Virtual environments and advanced interface design, pp. 473–513 (1995)Google Scholar
  78. 78.
    Ellis, S.R.: Presence of mind: a reaction to Thomas Sheridan’s further musings on the psychophysics of presence. Presence (Camb.) 5, 247–259 (1996)CrossRefGoogle Scholar
  79. 79.
    Lombard, M., Ditton, T.: At the heart of it all: the concept of presence. J. Comput. Commun. 3(2) (1997)Google Scholar
  80. 80.
    Schubert, T., Friedmann, F., Regenbrecht, H.: Visual representations and interpretations. In: Paton, R., Neilson, I. (eds.) Visual representations and interpretations, pp. 269–278. Springer, London (1999)CrossRefGoogle Scholar
  81. 81.
    Usoh, M., Catena, E., Arman, S., Slater, M.: Using presence questionnaires in reality. Presence Teleoper. Virtual Environ. 9, 497–503 (2000)CrossRefGoogle Scholar
  82. 82.
    Witmer, B., Singer, M.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoper. Virtual Environ. 7, 225–240 (1998)CrossRefGoogle Scholar
  83. 83.
    IJsselsteijn, WA., de Ridder, H., Freeman, J., Avons, SE.: Presence: concept, determinants and measurement. In: Proceedings of the SPIE, 3959, pp. 520–529Google Scholar
  84. 84.
    Wiederhold, B.K., Rizzo, A.: Virtual reality and applied psychophysiology. Appl. Psychophysiol. Biofeedback 30, 183–185 (2005)CrossRefGoogle Scholar
  85. 85.
    Pugnetti, L., Meehan, M., Mendozzi, L.: Psychophysiological correlates of virtual reality: a review. Presence Teleoper. Virtual Environ. 10, 384–400 (2001)CrossRefGoogle Scholar
  86. 86.
    Calvert, G.A., Thesen, T.: Multisensory integration: methodological approaches and emerging principles in the human brain. J. Physiol. Paris 98, 191–205 (2004)CrossRefGoogle Scholar
  87. 87.
    Ernst, M.O., Bülthoff, H.H.: Merging the senses into a robust percept. Trends Cogn. Sci. 8, 162–9 (2004)CrossRefGoogle Scholar
  88. 88.
    Kuppens, P., Tuerlinckx, F., Russell, J.A., Barrett, L.F.: The relation between valence and arousal in subjective experience. Psychol. Bull. 139, 917–40 (2013)CrossRefGoogle Scholar
  89. 89.
    Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 715–34 (2005)CrossRefGoogle Scholar
  90. 90.
    Scherer, K.R.: What are emotions? And how can they be measured? Soc. Sci. Inf. 44, 695–729 (2005)CrossRefGoogle Scholar
  91. 91.
    Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–70 (1988)CrossRefGoogle Scholar
  92. 92.
    Izard, C.: Patterns of Emotions. Elsevier Academic Press, Amsterdam (1972)Google Scholar
  93. 93.
    Ekman, P., Friesen, W.V., O’Sullivan, M., et al.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53, 712–7 (1987)CrossRefGoogle Scholar
  94. 94.
    Bradley, M.M., Lang, P.J.: Affective reactions to acoustic stimuli. Psychophysiology 37, 204–15 (2000)CrossRefGoogle Scholar
  95. 95.
    Bradley, M.M., Cuthbert, B.N., Lang, P.J.: Picture media and emotion: effects of a sustained affective context. Psychophysiology 33, 662–70 (1996)CrossRefGoogle Scholar
  96. 96.
    Anttonen, J., Surakka, V.: Emotions and heart rate while sitting on a chair. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ’05, p. 491. ACM Press, New York (2005)Google Scholar
  97. 97.
    Scheirer, J., Fernandez, R., Klein, J., Picard, R.W.: Frustrating the user on purpose: a step toward building an affective computer. Interact. Comput. 14, 93–118 (2002)CrossRefGoogle Scholar
  98. 98.
    Partala, T.: Affective information in human–computer interaction. VDM Verlag (2009)Google Scholar
  99. 99.
    Fu, Y., Leong, HV., Ngai, G., et al.: Physiological mouse: towards an emotion-aware mouse. In: 2014 IEEE 38th International Computers, Software and Applications Conference Work. IEEE, pp 258–263 (2014)Google Scholar
  100. 100.
    Asteriadis, S., Tzouveli, P., Karpouzis, K., Kollias, S.: Estimation of behavioral user state based on eye gaze and head pose-application in an e-learning environment. Multimed. Tools Appl. 41, 469–493 (2008)CrossRefGoogle Scholar
  101. 101.
    Steffin, M.: Virtual reality biofeedback in chronic pain and psychiatry. eMed. J. (2005). Available online at: http://www.emedicine.com/neuro/topic466.htm
  102. 102.
    Bersak, D., McDarby, G., Augenblick, N., et al.: Intelligent biofeedback using an immersive competitive environment. In: Proceedings of the UbiComp (2001)Google Scholar
  103. 103.
    Bowman, D., Kruijff, E., LaViola, J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley, Boston (2005)Google Scholar
  104. 104.
    Nielsen, J.: Usability Engineering. Academic Press, Boston (1993)MATHGoogle Scholar
  105. 105.
    Forlizzi, J., Battarbee, K.: Understanding experience in interactive systems. In: Proceedings of the 2004 Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques—DIS ’04, p. 261. ACM Press, New York (2004)Google Scholar
  106. 106.
    Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: factor analytic insights. Presence Teleoper. Virtual Environ. 10, 266–281 (2001)CrossRefGoogle Scholar
  107. 107.
    Bateman, C., Lowenhaupt, R., Nacke, L.: Player typology in theory and practice. In: DiGRA ’11—Proceedings of the 2011 DiGRA International Conference, Think Design Play, vol. 6 (2011)Google Scholar
  108. 108.
    Ramic-Brkic, B., Chalmers, A.: Olfactory adaptation in virtual environments. ACM Trans. Appl. Percept. 11, 1–16 (2014)CrossRefGoogle Scholar
  109. 109.
    Feng, M., Dey, A., Lindeman, R.: An initial exploration of a multi-sensory design space: tactile support for walking in immersive virtual environments. In: Proceedings of the IEEE Symposium on 3D User Interfaces, pp. 95–104 (2016)Google Scholar
  110. 110.
    Eidenberger, H., Mossel, A.: Indoor skydiving in immersive virtual reality with embedded storytelling. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology—VRST ’15, pp. 9–12. ACM Press, New York (2015)Google Scholar
  111. 111.
    Paddan, G.S., Griffin, M.J.: The transmission of translational seat vibration to the head—I. Vertical seat vibration. J. Biomech. 21, 191–197 (1988)CrossRefGoogle Scholar
  112. 112.
    Harris, L., Jenkin, M., Zikovitz, D.: Vestibular cues and virtual environments: choosing the magnitude of the vestibular cue. In: Proceedings IEEE Virtual Reality’99. IEEE Press, pp. 229–236 (1999)Google Scholar
  113. 113.
    Picard, R., Scheirer, J.: The Galvactivator: A Glove that Senses and Communicates Skin Conductivity. In: Proceedings of the 9th International Conference on Human Computer Interaction, pp. 1538–1542 (2001)Google Scholar
  114. 114.
    Nacke, L., Lindley, CA.: Flow and immersion in first-person shooters. In: Proceedings of the 2008 Conference on Future Play: Research, Play, Share—Future Play ’08, p. 81. ACM Press, New York (2008)Google Scholar
  115. 115.
    Greenwald, M.K., Cook, E.W., Lang, P.J.: Affective judgment and psychophysiological response: dimensional covariation in the evaluation of pictorial stimuli. J. Psychophysiol 3(1), 51–64 (1989)Google Scholar
  116. 116.
    Brooke, J.: SUS: a quick and dirty usability scale. In: Usability Evaluation in Industry (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ernst Kruijff
    • 1
  • Alexander Marquardt
    • 1
  • Christina Trepkowski
    • 1
  • Jonas Schild
    • 1
  • André Hinkenjann
    • 1
  1. 1.Institute of Visual ComputingBonn-Rhein-Sieg University of Applied SciencesSankt AugustinGermany

Personalised recommendations