The Visual Computer

, Volume 33, Issue 9, pp 1197–1210 | Cite as

Reconstruction of underlying curves with styling radius corners

Original Article


This paper presents a new curve fitting framework for styling design data. Given a data set that represents a filleted-like curve, underlying curves (U-curves) and styling radius corners (SR-corners) are generated by fitting to low curvature parts and highly curved ones, respectively. A set of U-curves are firstly reconstructed as a unique \(C^0\) composite B-spline curve, and then an SR-corner is reconstructed for each \(C^0\) corner. This approach guarantees that U-curves can be smoothly connected through convex SR-corners while enabling full editing of the smooth corners up to sharp ones. Compared with existing schemes that naively fit a curve to each part, the proposed framework provides a guiding principle for the generation of curves, which is more suitable for styling design. Experimental results demonstrate that high-quality curves can be generated even from real-world scanned data.


Underlying curve Styling radius corner Smooth changes in curvature and torsion 


  1. 1.
    Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193 (1954)CrossRefGoogle Scholar
  2. 2.
    Baran, I., Lehtinen, J., Popović, J.: Sketching clothoid splines using shortest paths. Comput. Graphics Forum 29(2), 655–664 (2010)CrossRefGoogle Scholar
  3. 3.
    Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood Cliffs, New Jersey (1973)Google Scholar
  4. 4.
    Burchard, H., Ayers, J., Frey, W., Sapidis, N.: Approximation with aesthetic constraints. In: Sapidis, N.S. (ed.) Designing Fair Curves and Surfaces, pp. 3–28. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  5. 5.
    Cao, J., Wang, G.: A note on class A Bézier curves. Comput. Aided Geom. Des. 25(7), 523–528 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)CrossRefGoogle Scholar
  7. 7.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  8. 8.
    Farin, G.: Class A Bézier curves. Comput. Aided Geom. Des. 23(7), 573–581 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Guiqing, L., Xianmin, L., Hua, L.: 3D discrete clothoid splines. In: Proceedings of the International Conference on Computer Graphics, pp. 321–324 (2001)Google Scholar
  10. 10.
    Hosaka, M.: Modeling of Curves and Surfaces in CAD/CAM. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  11. 11.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A K Peters Ltd, Natick (1993)MATHGoogle Scholar
  12. 12.
    Lai, Y.K., Jin Liu, Y., Zang, Y., Hu, S.M.: Fairing wireframes in industrial surface design. In: IEEE International Conference on Shape Modeling and Applications, pp. 29–35 (2008)Google Scholar
  13. 13.
    Li, W., Xu, S., Zhao, G., Goh, L.P.: Adaptive knot placement in \(b\)-spline curve approximation. Comput. Aided Des. 37(8), 791–797 (2005)CrossRefMATHGoogle Scholar
  14. 14.
    Lloyd, S.P.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    McCrae, J., Singh, K.: Sketching piecewise clothoid curves. Comput. Graphics 33(4), 452–461 (2009)CrossRefGoogle Scholar
  16. 16.
    Moreton, H.P., Séquin, C.H.: Functional optimization for fair surface design. Comput. Graphics 26(2), 167–176 (1992)Google Scholar
  17. 17.
    NLopt (Nonlinear optimization library): Accessed 15 June 2016
  18. 18.
    Okaniwa, S., Nasri, A., Lin, H., Abbas, A., Kineri, Y., Maekawa, T.: Uniform \(b\)-spline curve interpolation with prescribed tangent and curvature vectors. IEEE Trans. Vis. Comput. Graphics 18(9), 1474–1487 (2012)Google Scholar
  19. 19.
    Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York (1997)CrossRefMATHGoogle Scholar
  20. 20.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graphics Image Process. 1(3), 244–256 (1972)Google Scholar
  21. 21.
    Schnieder, R., Kobbelt, L.: Discrete fairing of curves and surfaces based on linear curvature distribution. In: Curve and Surface Design, Saint-Malo, pp. 371–380 (1999)Google Scholar
  22. 22.
    Tsuchie, S., Hosino, T., Higashi, M.: High-quality vertex clustering for surface mesh segmentation using student-\(t\) mixture model. Comput. Aided Des. 46, 69–78 (2014)CrossRefGoogle Scholar
  23. 23.
    Tsuchie, S., Okamoto, K.: High-quality quadratic curve fitting for scanned data of styling design. Comput. Aided Des. 71, 39–50 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wallner, J., Pottmann, H., Hofer, M.: Fair webs. Vis. Comput. 23(1), 83–94 (2007)CrossRefGoogle Scholar
  25. 25.
    Yang, H., Wang, W., Sun, J.: Control point adjustment for \(b\)-spline curve approximation. Comput. Aided Des. 36, 639–652 (2004)CrossRefGoogle Scholar
  26. 26.
    Yoshida, N., Saito, T.: Interactive aesthetic curve segments. Vis. Comput. 22(9–11), 896–905 (2006)CrossRefGoogle Scholar
  27. 27.
    Zang, Y., Liu, Y.J., Lai, Y.K.: Note on industrial applications of Hu’s surface extension algorithm. In: Advances in Geometric Modeling and Processing (GMP 2008), LNCS, vol. 4975, pp. 304–314 (2008)Google Scholar
  28. 28.
    Ziatdinov, R.: Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function. Comput. Aided Geom. Des. 29(7), 510–518 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Nihon Unisys, Ltd.TokyoJapan

Personalised recommendations