The Visual Computer

, Volume 33, Issue 4, pp 443–458 | Cite as

Generating various composite human faces from real 3D facial images

  • Igor Chalás
  • Petra Urbanová
  • Vojtěch Juřík
  • Zuzana Ferková
  • Marie Jandová
  • Jiří Sochor
  • Barbora Kozlíková
Original Article

Abstract

Generating large human crowds of distinguishable individuals is one of the challenges in the gaming industry. When the scene contains many characters, it becomes impracticable to create all the individual characters manually. However, the requirement for the different appearances of individuals in a crowd, namely their faces, is now in greater demand. Therefore, this paper describes our solution to the automatic generation of human faces that are created as a composite of facial parts of 3D scans of real human faces. However, the user has the possibility to further adjust the composite by designing replacements, leading to a desired appearance. The final composite can be exported and attached to a given avatar. To evaluate the usability of our solution, we performed two case studies. The conducted perception study performed with 104 participants aimed to confirm the decreasing human ability to recognize morphologically modified faces. The morphological study focused on the quantification of the extent of facial modifications. Both studies were performed by domain experts from psychology and anthropology.

Keywords

Facial composite 3D face model Face perception Crowd simulation Morphological modification 

Notes

Acknowledgments

This work was supported by the Masaryk University projects MUNI/A/1213/2014, MUNI/33/08/ 2015, MUNI/FR/1843/2014, and MUNI/A/1281/2014.

References

  1. 1.
    Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)CrossRefGoogle Scholar
  2. 2.
    Aubel, A., Boulic, R., Thalmann, D.: Real-time display of virtual humans: levels of details and impostors. IEEE Trans. Circuits Syst. Video Technol. 10, 207–217 (2000)CrossRefGoogle Scholar
  3. 3.
    Bastioni, M., Re, S., Misra, S.: Ideas and methods for modeling 3D human figures: the principal algorithms used by MakeHuman and their implementation in a new approach to parametric modeling. In: Proceedings of the 1st Bangalore Annual Compute Conference, COMPUTE ’08, pp. 10:1–10:6. ACM, New York (2008)Google Scholar
  4. 4.
    Beacco, A., Pelechano, N., Andújar, C.: A survey of real-time crowd rendering. Comput. Graph. Forum (2015). doi: 10.1111/cgf.12774
  5. 5.
    Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL tentative, pp. 586–606. International Society for Optics and Photonics (1992)Google Scholar
  6. 6.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’99, pp. 187–194. ACM Press/Addison-Wesley Publishing Co., New York (1999)Google Scholar
  7. 7.
    Bruce, V., Young, A.: Face Perception. Psychology Press, New York (2012)Google Scholar
  8. 8.
    Chalás, I., Urbanová, P., Kotulanová, Z., Jandová, M., Králík, M., Kozlíková, B., Sochor, J.: Forensic 3D facial identication software (FIDENTIS). In: Proceedings of the 20th World Meeting of the International Association of Forensic Sciences (2014)Google Scholar
  9. 9.
    Deng, Z., Chen, G., Wang, F., Zhou, F.: Mesh merging with mean value coordinates. Proceedings of the 2012 Fourth International Conference on Digital Home. ICDH ’12, pp. 278–282. IEEE Computer Society, Washington, DC (2012)Google Scholar
  10. 10.
    Dobbyn, S., Hamill, J., O’Conor, K., O’Sullivan, C.: Geopostors: A real-time geometry/impostor crowd rendering system. In: IN SI3D 05: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 95–102. ACM Press (2005)Google Scholar
  11. 11.
    Dobbyn, S., McDonnell, R., Kavan, L., Collins, S., O’Sullivan, C.: Clothing the masses: real-time clothed crowds with variation. Eurographics 2006 Short Papers, pp. 103–106 (2006)Google Scholar
  12. 12.
    Fetter, V.: Antropologie. Academia, Praha (1967)Google Scholar
  13. 13.
    Galvánek, M., Furmanová, K., Chalás, I., Sochor, J.: Automated facial landmark detection, comparison and visualization. In: Proceedings of the 31st Spring conference on Computer Graphics, SCCG ’15 (2015)Google Scholar
  14. 14.
    Gosselin, D., Sander, P., Mitchell, J.: Drawing a crowd. Shader X3, 505–517 (2005)Google Scholar
  15. 15.
    Hammer, Ø., Harper, D.A.T., Ryan, P.D.: PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), 1–9 (2001)Google Scholar
  16. 16.
    Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 23(3), 391–400 (2004)CrossRefGoogle Scholar
  17. 17.
    Hilton, A., Beresford, D., Gentils, T., Smith, R., Sun, W., Illingworth, J.: Whole-body modelling of people from multiview images to populate virtual worlds. Vis. Comput. 16(7), 411–436 (2000)CrossRefMATHGoogle Scholar
  18. 18.
    Ip, H.H.S., Yin, L.: Constructing a 3D individualized head model from two orthogonal views. Vis. Comput. 12(5), 254–266 (1996)CrossRefGoogle Scholar
  19. 19.
    IBM: IBM SPSS Statistics, version 22. http://www-01.ibm.com/software/analytics/spss/ (2014). Accessed 14 Dec 2015
  20. 20.
    Inversions, S.: FaceGen. http://www.facegen.com/. Accessed 14 Apr 2015
  21. 21.
    Kähler, K., Haber, J., Yamauchi, H., Seidel, H.P.: Head Shop: generating animated head models with anatomical structure. Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’02, pp. 55–63. ACM, New York (2002)Google Scholar
  22. 22.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29(3), 273–285 (1985)CrossRefGoogle Scholar
  23. 23.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefMATHGoogle Scholar
  24. 24.
    Kotulanová, Z., Chalás, I., Urbanová, P.: 3D virtual model database of human faces: Applications in anthropology and forensic sciences. Mikulov Anthropology Meeting. The Dolní Věstonice Studies 20, pp. 177–180. Academy of Sciences of the Czech Republic, Brno (2014)Google Scholar
  25. 25.
    Kraevoy, V., Sheffer, A.: Template-based mesh completion. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP ’05. Eurographics Association, Aire-la-Ville (2005)Google Scholar
  26. 26.
    Loménie, N., Stamon, G.: Morphological mesh filtering and \(\alpha \)-objects. Pattern Recognit. Lett. 29(10), 1571–1579 (2008)CrossRefGoogle Scholar
  27. 27.
    Maejima, A., Morishima, S.: Human head modeling based on fast-automatic mesh completion. In: ACM SIGGRAPH ASIA 2009 Posters, SIGGRAPH ASIA ’09, pp. 53:1–53:1. ACM, New York (2009)Google Scholar
  28. 28.
    Magnenat-Thalmann, N., Thalmann, D.: Virtual humans: thirty years of research, what next? Vis. Comput. 21(12), 997–1015 (2005)CrossRefGoogle Scholar
  29. 29.
    Maim, J., Yersin, B., Pettre, J., Thalmann, D.: YaQ: an architecture for real-time navigation and rendering of varied crowds. IEEE Comput. Graph. Appl. 29(4), 44–53 (2009)CrossRefGoogle Scholar
  30. 30.
    McDonnell, R., Larkin, M., Dobbyn, S., Collins, S., O’Sullivan, C.: Clone attack! perception of crowd variety. ACM Trans. Graph. 27(3), 26 (2008)CrossRefGoogle Scholar
  31. 31.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and mathematics III, pp. 35–57. Springer, Berlin (2003)Google Scholar
  32. 32.
    Oh, S., Kim, H., Magnenat-Thalmann, N., Wohn, K.: Generating unified model for dressed virtual humans. Vis. Comput. 21(8–10), 522–531 (2005)CrossRefGoogle Scholar
  33. 33.
    Pighin, F.H., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.: Synthesizing realistic facial expressions from photographs. In: SIGGRAPH ’98, pp. 75–84 (1998)Google Scholar
  34. 34.
    Porcher Nedel, L., Thalmann, D.: Anatomic modeling of deformable human bodies. Vis. Comput. 16(6), 306–321 (2000)CrossRefMATHGoogle Scholar
  35. 35.
    StatSoft, I.: STATISTICA (data analysis software system), version 12. http://www.statsoft.com (2013). Accessed 08 Dec 2015
  36. 36.
    Tecchia, F., Loscos, C., Chrysanthou, Y.: Image/based crowd rendering. IEEE Comput. Graph. Appl. 22(2), 36–43 (2002)CrossRefGoogle Scholar
  37. 37.
    Thalmann, D., Grillon, H., Maim, J., Yersin, B.: Scalable solutions for simulating, animating, and rendering real-time crowds of diverse virtual humans. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds.) Modeling, Simulation and Visual Analysis of Crowds, The International Series in Video Computing, vol. 11, pp. 123–145. Springer, New York (2013)CrossRefGoogle Scholar
  38. 38.
    Thalmann, D., O’Sullivan, C., Yersin, B., Maim, J., McDonnell, R.: Populating virtual environments with crowds. Eurograph. Tutor. 1, 21–124 (2007)Google Scholar
  39. 39.
    Toledo, L., De Gyves, O., Rudomfn, I.: Hierarchical level of detail for varied animated crowds. Vis. Comput. 30(6–8), 949–961 (2014)CrossRefGoogle Scholar
  40. 40.
    Ulicny, B.: Ciechomski, P.d.H., Thalmann, D.: Crowdbrush: Interactive authoring of real-time crowd scenes. Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’04, pp. 243–252. Eurographics Association, Aire-la-Ville (2004)Google Scholar
  41. 41.
    Ulicny, B., Thalmann, D.: Towards interactive real-time crowd behavior simulation. Comput. Graph. Forum 21, 767–775 (2002)CrossRefGoogle Scholar
  42. 42.
    Urbanová, P., Čuta, M., Kotulanová, Z., Chalás, I.: Somatoskopické znaky člověka. http://www.sci.muni.cz/somatoskopie/ (2010)
  43. 43.
    Visual Computing Lab, I.C.: MeshLab, version 1.3.2. http://meshlab.sourceforge.net/ (2013). Accessed 20 Dec 2015
  44. 44.
    Zack, G., Rogers, W., Latt, S.: Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25(7), 741–753 (1977)CrossRefGoogle Scholar
  45. 45.
    Zinsser, T., Schmidt, J., Niemann, H.: Point set registration with integrated scale estimation. In: International Conference on Pattern Recognition and Image Processing, pp. 116–119 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Igor Chalás
    • 1
  • Petra Urbanová
    • 2
  • Vojtěch Juřík
    • 3
  • Zuzana Ferková
    • 1
  • Marie Jandová
    • 2
  • Jiří Sochor
    • 1
  • Barbora Kozlíková
    • 1
  1. 1.Department of Computer Graphics and DesignMasaryk UniversityBrnoCzech Republic
  2. 2.Department of AnthropologyMasaryk UniversityBrnoCzech Republic
  3. 3.Department of PsychologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations