The Visual Computer

, Volume 33, Issue 9, pp 1103–1119 | Cite as

Multiple cues-based active contours for target contour tracking under sophisticated background

  • Peng LvEmail author
  • Qingjie Zhao
  • Yanming Chen
  • Liujun Zhao
Original Article


In this paper, we propose a novel target contour tracking method under sophisticated background using the multiple cues-based active contour model. To locate the target position, a contour-based mean-shift tracker is designed which combines both color and texture information. To reduce the adverse impact of sophisticated background and also accelerate the curve motion, we propose a two-layer-based target appearance model that combines both discriminative pre-learned-based global layer and voting-based local layer. The proposed appearance model is able to extract rough target region from the complex background, which provides important target region information for our active contour model. We subsequently introduce a dynamical shape model to provide prior target shape information for more stable segmentation. To obtain accurate target boundaries, we design a new multiple cues-based active contour model which integrates with target edge, discriminative region, and shape information. The experimental results on 30 video sequences demonstrate that the proposed method outperforms other competitive contour tracking methods under various tracking environment.


Object contour tracking Active contours Level sets Segmentation 



This work was supported in part by the National Natural Science Foundation of China under Grand (Nos. 61175096 and 61303245) and Specialized Fund for Joint Building Program of Beijing municipal Education Commission. The authors would also like to thank C. Li, J. Fan, M. Godec, S. Wang, Z. Cai, X. Jia, and M. Yang et al. for providing their source codes for comparisons in our experiments.

Supplementary material

Supplementary material 1 (wmv 15068 KB)


  1. 1.
    Allili, M.S., Ziou, D.: Active contours for video object tracking using region, boundary and shape information. Signal Image Video Process. 1(2), 101–117 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 261–271 (2007). doi: 10.1109/TPAMI.2007.35 CrossRefGoogle Scholar
  3. 3.
    Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust video object cutout using localized classifiers. ACM Trans. Gr. 28(3), 70 (2009)CrossRefGoogle Scholar
  4. 4.
    Bibby, C., Reid, I.: Robust real-time visual tracking using pixel-wise posteriors. In: Proc. Eur. Conf. Comput. Vision: Part II, ECCV ’08, pp. 831–844 (2008)Google Scholar
  5. 5.
    Bibby, C., Reid, I.: Real-time tracking of multiple occluding objects using level sets. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1307–1314 (2010)Google Scholar
  6. 6.
    Cai, L., He, L., Yamashita, T., Xu, Y., Zhao, Y., Yang, X.: Robust contour tracking by combining region and boundary information. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1784–1794 (2011)CrossRefGoogle Scholar
  7. 7.
    Cai, Z., Wen, L., Lei, Z., Vasconcelos, N., Li, S.: Robust deformable and occluded object tracking with dynamic graph. IEEE Trans. Image Process. 23(12), 5497–5509 (2014). doi: 10.1109/TIP.2014.2364919 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. IEEE Int. Conf. Comput. Vision, pp. 694–699 (1995)Google Scholar
  9. 9.
    Chen, L., Zhou, Y., Wang, Y., Yang, J.: Gacv: geodesic-aided c-v method. Pattern Recogn. 39(7), 1391–1395 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chiverton, J., Xie, X., Mirmehdi, M.: Tracking with active contours using dynamically updated shape information. In: Proc. British Mach. Vision Conf., pp. 253–262 (2008)Google Scholar
  11. 11.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003). doi: 10.1109/TPAMI.2003.1195991 CrossRefGoogle Scholar
  12. 12.
    Cremers, D.: Dynamical statistical shape priors for level set-based tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1262–1273 (2006)CrossRefGoogle Scholar
  13. 13.
    Fan, J., Shen, X., Wu, Y.: Scribble tracker: a matting-based approach for robust tracking. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1633–1644 (2012)CrossRefGoogle Scholar
  14. 14.
    Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects. Comput. Vision Image Underst. 117(10), 1245–1256 (2013)CrossRefGoogle Scholar
  15. 15.
    Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2141–2148 (2010). doi: 10.1109/CVPR.2010.5539893
  16. 16.
    Hoch, M., Litwinowicz, P.C.: A semi-automatic system for edge tracking with snakes. Visual Comput 12(2), 75–83. doi: 10.1007/BF01782106
  17. 17.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988). doi: 10.1007/BF00133570 CrossRefzbMATHGoogle Scholar
  18. 18.
    Khoreva, A., Galasso, F., Hein, M., Schiele, B.: Classifier based graph construction for video segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–960 (2015). doi: 10.1109/CVPR.2015.7298697
  19. 19.
    Krotosky, S.J., Trivedi, M.M.: Person surveillance using visual and infrared imagery. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1096–1105 (2008)CrossRefGoogle Scholar
  20. 20.
    Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: IEEE International Conference on Computer Vision, pp. 1995–2002 (2011). doi: 10.1109/ICCV.2011.6126471
  21. 21.
    Li, C., Xu, C., Gui, C., Fox, M.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.: Video segmentation by tracking many figure-ground segments. In: IEEE International Conference on Computer Vision, pp. 2192–2199 (2013). doi: 10.1109/ICCV.2013.273
  23. 23.
    Ma, T., Latecki, L.: Maximum weight cliques with mutex constraints for video object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 670–677 (2012). doi: 10.1109/CVPR.2012.6247735
  24. 24.
    Mahmoodi, S.: Shape-based active contours for fast video segmentation. IEEE Signal Process. Lett. 16(10), 857–860 (2009). doi: 10.1109/LSP.2009.2025924 CrossRefGoogle Scholar
  25. 25.
    Mansouri, A.R.: Region tracking via level set pdes without motion computation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 947–961 (2002)CrossRefGoogle Scholar
  26. 26.
    Niethammer, M., Tannenbaum, A., Angenent, S.: Dynamic active contours for visual tracking. IEEE Trans. Autom. Control 51(4), 562–579 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266–280 (2000)CrossRefGoogle Scholar
  28. 28.
    Pirsiavash, H., Ramanan, D., Fowlkes, C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1201–1208 (2011). doi: 10.1109/CVPR.2011.5995604
  29. 29.
    Ramakanth, S., Babu, R.: Seamseg: Video object segmentation using patch seams. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 376–383 (2014). doi: 10.1109/CVPR.2014.55
  30. 30.
    Stenger, B., Thayananthan, A., Torr, P.H.S., Cipolla, R.: Model-based hand tracking using a hierarchical bayesian filter. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1372–1384 (2006)CrossRefzbMATHGoogle Scholar
  31. 31.
    Sun, X., Yao, H., Zhang, S.: A novel supervised level set method for non-rigid object tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3393–3400 (2011). doi: 10.1109/CVPR.2011.5995656
  32. 32.
    MP, Timo Ahonen Abdenour Hadid: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  33. 33.
    Tsai, D., Flagg, M., Nakazawa, A., Rehg, J.M.: Motion coherent tracking using multi-label MRF optimization. Int. J. Comput. Vision 100(2), 190–202 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Vaswani, N., Rathi, Y., Yezzi, A., Tannenbaum, A.: Deform pf-mt: particle filter with mode tracker for tracking nonaffine contour deformations. IEEE Trans. Image Process. 19(4), 841–857 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: IEEE International Conference on Computer Vision, pp. 1323–1330 (2011). doi: 10.1109/ICCV.2011.6126385
  36. 36.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)CrossRefGoogle Scholar
  37. 37.
    Xiao, C., Gan, J., Hu, X.: Fast level set image and video segmentation using new evolution indicator operators. Visual Comput. 29(1), 27–39 (2013)CrossRefGoogle Scholar
  38. 38.
    Yilmaz, A.: Kernel-based object tracking using asymmetric kernels with adaptive scale and orientation selection. Mach. Vision Appl. 22(2), 255–268 (2011). doi: 10.1007/s00138-009-0237-4 CrossRefGoogle Scholar
  39. 39.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)CrossRefGoogle Scholar
  40. 40.
    Zhang, T., Freedman, D.: Improving performance of distribution tracking through background mismatch. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 282–287 (2005)CrossRefGoogle Scholar
  41. 41.
    Zou, D., Chen, X., Cao, G., Wang, X.: Video matting via sparse and low-rank representation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1564–1572 (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Peng Lv
    • 1
    Email author
  • Qingjie Zhao
    • 1
  • Yanming Chen
    • 1
  • Liujun Zhao
    • 1
  1. 1.Beijing Key Laboratory of Intelligence Information Technology, School of Computer ScienceBeijing Institute of TechnologyBeijingChina

Personalised recommendations