The Visual Computer

, Volume 32, Issue 6–8, pp 739–749 | Cite as

Hybrid fur rendering: combining volumetric fur with explicit hair strands

  • Tobias Grønbeck Andersen
  • Viggo Falster
  • Jeppe Revall Frisvad
  • Niels Jørgen Christensen
Original Article


Hair is typically modeled and rendered using either explicitly defined hair strand geometry or a volume texture of hair densities. Taken each on their own, these two hair representations have difficulties in the case of animal fur as it consists of very dense and thin undercoat hairs in combination with coarse guard hairs. Explicit hair strand geometry is not well-suited for the undercoat hairs, while volume textures are not well-suited for the guard hairs. To efficiently model and render both guard hairs and undercoat hairs, we present a hybrid technique that combines rasterization of explicitly defined guard hairs with ray marching of a prismatic shell volume with dynamic resolution. The latter is the key to practical combination of the two techniques, and it also enables a high degree of detail in the undercoat. We demonstrate that our hybrid technique creates a more detailed and soft fur appearance as compared with renderings that only use explicitly defined hair strands. Finally, our rasterization approach is based on order-independent transparency and renders high-quality fur images in seconds.


Fur Hair strand Rasterization Ray marching  Photorealistic rendering Order-independent transparency  Shell volume 



We would like to thank the creative workshop Kopenhagen Studio at Kopenhagen Fur ( for kindly loaning us the mink fur sample appearing in the reference photos. The Stanford Bunny model is courtesy of the Stanford University Computer Graphics Laboratory (


  1. 1.
    Ando, M., Morishima, S.: Expression and motion control of hair using fast collision detection methods. In: Image analysis applications and computer graphics. Lecture notes in computer science, vol. 1024, pp. 463–470. Springer (1995)Google Scholar
  2. 2.
    Angelidis, A., McCane, B.: Fur simulation with spring continuum. Vis. Comput. 25(3), 255–265 (2009)CrossRefGoogle Scholar
  3. 3.
    Barringer, R., Gribel, C.J., Akenine-Möller, T.: High-quality curve rendering using line sampled visibility. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia 2012), 31(6), 162:1–162:10 (2012)Google Scholar
  4. 4.
    Bruderlin, A.: A basic hair/fur pipeline. In: N. Magnenat-Thalmann (ed.) Photorealistic hair modeling, animation, and rendering, no. 34 in ACM SIGGRAPH 2003 Course Notes. ACM (2003)Google Scholar
  5. 5.
    Csuri, C., Hackathorn, R., Parent, R., Carlson, W., Howard, M.: Towards an interactive high visual complexity animation system. Comput. Graph. (Proceedings of SIGGRAPH 79) 13(2), 289–299 (1979)Google Scholar
  6. 6.
    d’Eon, E., Francois, G., Hill, M., Letteri, J., Aubry, J.M.: An energy-conserving hair reflectance model. Comput. Graph. Forum (Proceedings of EGSR 2011) 30(4), 1181–1187 (2011)Google Scholar
  7. 7.
    Goldman, D.B.: Fake fur rendering. In: Proceedings of SIGGRAPH 1997, pp. 127–134. ACM Press, Addison-Wesley (1997)Google Scholar
  8. 8.
    Heitz, E., Dupuy, J., Crassin, C., Dachsbacher, C.: The SGGX microflake distribution. ACM Trans. Graph. (Proceedings of SIGGRAPH 2015) 34(4), 1–48 (2015). 48:1–48:11Google Scholar
  9. 9.
    Heitz, E., Neyret, F.: Representing appearance and pre-filtering subpixel data in sparse voxel octrees. In: Proceedings of high-performance graphics (HPG’12), pp. 125–134 (2012)Google Scholar
  10. 10.
    Hiebert, B., Dave, J., Kim, T.Y., Neulander, I., Rijpkema, H., Telford, W.: The chronicles of Narnia: the lion, the crowds and rhythm and hues. In: ACM SIGGRAPH 2006 courses, Article 1. ACM (2006)Google Scholar
  11. 11.
    Kajiya, J.T., Kay, T.L.: Rendering fur with three dimensional textures. Comptut. Graph. (Proceedings of SIGGRAPH 89) 23(3), 271–280 (1989)Google Scholar
  12. 12.
    Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. Comput. Graph. (Proceedings of SIGGRAPH 84) 18(3), 165–174 (1984)Google Scholar
  13. 13.
    Kaszowski, S., Rust, C.C., Shackelford, R.M.: Determination of the hair density in the mink. J. Mammal. 51(1), 27–34 (1970)CrossRefGoogle Scholar
  14. 14.
    Kniss, J., Premože, S., Hansen, C., Ebert, D.: Interactive translucent volume rendering and procedural modeling. Proceedings of IEEE visualization 2002, 109–116 (2002)Google Scholar
  15. 15.
    LeBlanc, A.M., Turner, R., Thalmann, D.: Rendering hair using pixel blending and shadow buffers. J. Vis. Comput. Anim. 2(3), 92–97 (1991)CrossRefGoogle Scholar
  16. 16.
    Lee, J., Kim, D., Kim, H., Henzel, C., Kim, J.I., Lim, M.: Real-time fur simulation and rendering. Comput. Anim. Virtual Worlds (Proceedings of CASA 2010) 21(3–4), 311–320 (2010)Google Scholar
  17. 17.
    Lengyel, J., Praun, E., Finkelstein, A., Hoppe, H.: Real-time fur over arbitrary surfaces. In: Proceedings of symposium on interactive 3D graphics (i3D 2001), pp. 227–232. ACM (2001)Google Scholar
  18. 18.
    Lengyel, J.E.: Real-time fur. In: Rendering techniques 2000 (Proceedings of EGWR 2000), pp. 243–256. Springer (2000)Google Scholar
  19. 19.
    Lokovic, T., Veach, E.: Deep shadow maps. In: Proceedings of SIGGRAPH 2000, pp. 385–392. ACM Press/Addison-Wesley (2000)Google Scholar
  20. 20.
    Marschner, S.R., Jensen, H.W., Cammarano, M., Worley, S., Hanrahan, P.: Light scattering from human hair fibers. ACM Trans. Graph. (Proceedings of SIGGRAPH 2003) 22(3), 780–791 (2003)Google Scholar
  21. 21.
    McEwan, I., Sheets, D., Richardson, M., Gustavson, S.: Efficient computational noise in GLSL. J. Graph. Tools 16(2), 85–94 (2012)CrossRefGoogle Scholar
  22. 22.
    Miller, G.S.P.: From wire-frames to furry animals. In: Proceedings of graphics interface (GI ’88), pp. 138–145 (1988)Google Scholar
  23. 23.
    Moon, J.T., Marschner, S.R.: Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. Graph. (Proceedings of SIGGRAPH 2006) 25(3), 1067–1074 (2006)Google Scholar
  24. 24.
    Moon, J.T., Walter, B., Marschner, S.: Efficient multiple scattering in hair using spherical harmonics. ACM Trans. Graph. (Proceedings of SIGGRAPH 2008) 27(3), 1–31 (2008). :1–31:7Google Scholar
  25. 25.
    Neulander, I.: Quick image-based lighting of hair. In: ACM SIGGRAPH 2004 sketches, p. 43. ACM (2004)Google Scholar
  26. 26.
    Neulander, I.: Fast furry ray gathering. In: ACM SIGGRAPH 2010 talks, Article 2. ACM (2010)Google Scholar
  27. 27.
    Neulander, I., Huang, P., Rijpkema, H.: Grooming and rendering cats and dogs. In: ACM SIGGRAPH 2001 sketches, p. 190. ACM (2001)Google Scholar
  28. 28.
    Neulander, I., van de Panne, M.: Rendering generalized cylinders with paintstrokes. In: Proceedings of graphics interface (GI ’98), pp. 233–242 (1998)Google Scholar
  29. 29.
    Neyret, F.: A general and multiscale model for volumetric textures. In: Proceedings of graphics interface (GI ’95), pp. 83–91 (1995)Google Scholar
  30. 30.
    Neyret, F.: Synthesizing verdant landscapes using volumetric textures. In: Rendering techniques ’96 (Proceedings of EGWR 1996), pp. 215–224. Springer (1996)Google Scholar
  31. 31.
    Perlin, K., Hoffert, E.M.: Hypertexture. Comput. Graph. (Proceedings of SIGGRAPH 89) 23(3), 253–262 (1989)Google Scholar
  32. 32.
    Qin, H., Chai, M., Hou, Q., Ren, Z., Zhou, K.: Cone tracing for furry object rendering. IEEE Trans. Vis. Comput. Graph. 20(8), 1178–1188 (2014)CrossRefGoogle Scholar
  33. 33.
    Ren, Z., Zhou, K., Li, T., Hua, W., Guo, B.: Interactive hair rendering under environment lighting. ACM Trans. Graph. (Proceedings of SIGGRAPH 2010) 29(4), 1–55 (2010). :1–55:8Google Scholar
  34. 34.
    Sadeghi, I., Pritchett, H., Jensen, H.W., Tamstorf, R.: An artist friendly hair shading system. ACM Trans. Graph. (Proceedings of SIGGRAPH 2010) 29((4:1–4:10)), 56 (2010)Google Scholar
  35. 35.
    Van Gelder, A., Wilhelms, J.: An interactive fur modeling technique. In: Proceedings of graphics interface (GI ’97), pp. 181–188 (1997)Google Scholar
  36. 36.
    Xu, K., Ma, L.Q., Ren, B., Wang, R., Hu, S.M.: Interactive hair rendering and appearance editing under environment lighting. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia 2011) 30(6), 1–173 (2011). 173:1–173:10Google Scholar
  37. 37.
    Yan, L.Q., Tseng, C.W., Jensen, H.W., Ramamoorthi, R.: Physically-accurate fur reflectance: Modeling, measurement and rendering. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia 2015) 34(6), 1–185 (2015). 185:1–185:13Google Scholar
  38. 38.
    Yang, G., Sun, H., Wu, E., Wang, L.: Interactive fur shaping and rendering using nonuniform-layered textures. IEEE Comput. Graph. Appl. 28(4), 24–32 (2008)CrossRefGoogle Scholar
  39. 39.
    Yang, J.C., Hensley, J., Grün, H., Thibieroz, N.: Real-time concurrent linked list construction on the GPU. Comput. Graph. Forum (Proceedings of EGSR 2010) 29(4), 1297–1304 (2010)Google Scholar
  40. 40.
    Yu, X., Yang, J.C., Hensley, J., Harada, T., Yu, J.: A framework for rendering complex scattering effects on hair. In: Proceedings of ACM SIGGRAPH symposium on interactive 3D graphics and games (i3D 2012), pp. 111–118. ACM (2012)Google Scholar
  41. 41.
    Yuksel, C., Tariq, S.: Advanced techniques for real-time hair rendering and simulation. In: ACM SIGGRAPH 2010 courses, Article 1. ACM (2010)Google Scholar
  42. 42.
    Zinke, A., Sobottka, G., Weber, A.: Photo-realistic rendering of blond hair. In: Proceedings of vision, modeling, and visualization (VMV 2004), pp. 191–198 (2004)Google Scholar
  43. 43.
    Zinke, A., Yuksel, C., Weber, A., Keyser, J.: Dual scattering approximation for fast multiple scattering in hair. ACM Trans. Graph. (Proceedings of SIGGRAPH 2008) 27(3), 1–32 (2008). 32:1–32:10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tobias Grønbeck Andersen
    • 1
  • Viggo Falster
    • 1
  • Jeppe Revall Frisvad
    • 1
  • Niels Jørgen Christensen
    • 1
  1. 1.Technical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations