Advertisement

The Visual Computer

, Volume 32, Issue 6–8, pp 921–932 | Cite as

Involving multiple fingers in exploring a haptic surface: an evaluation study

  • Alejandro Catala
  • Miguel Oliver
  • Jose Pascual Molina
  • Pascual GonzalezEmail author
Original Article

Abstract

In most haptic search tasks, tactile stimuli are usually presented to the fingers to discriminate simulated features and identify patterns. In this paper, we focus on a more complex exploration task in which users have to discriminate different stimuli, move their fingers in a free way to find and locate an object in a wider area of exploration and integrate all the perceived information to determine the position of the object. The study explores how users perform this haptic search task involving one or two fingers on a surface area. In order to carry out this research and overcome limitations of current hardware approaches to multi-point haptic surfaces, we used a setting consisting of a capacitive multi-touch screen and a general-purpose wearable vibrotactile device designed in our laboratory. The results indicate that using one finger in one hand shows to be more effective than using two fingers in either one or two hands in the task under study. Users showed higher confidence, lower exploration times, higher amount of right answers and higher exploration speed. This suggests that great efforts in providing independent multi-point haptic surface hardware could not be a priority for this kind of exploration task.

Keywords

Human computer interaction Haptic surface Haptics Multi-point feedback Touch Tactile search 

Notes

Acknowledgments

This research has been funded by the Spanish Ministry of Economy and Competitiveness and by the FEDER funds of the EU under the project Grants insPIre (TIN2012-34003). Miguel Oliver holds an FPU scholarship (FPU13/03141) from the Spanish Government. We want to thank Dr. Jonatan Martinez for his valuable input and special support in hardware development and provision. Also thanks to Dr. Javier Jaen for his valuable comments during the preparation of this manuscript.

References

  1. 1.
    Assumpção, L., Shi, Z., Zang, X., Müller, H.J., Geyer, T.: Contextual cueing: implicit memory of tactile context facilitates tactile search. Atten. Percept. Psychophys. 77(4), 1212–1222 (2015)Google Scholar
  2. 2.
    Bau, O., Poupyrev, I., Israr, A., Harrison, C.: TeslaTouch: electrovibration for touch surfaces. In: Proc. 23nd annual ACM symposium on User interface software and technology (UIST ’10), pp. 283–292. ACM, New York (2010)Google Scholar
  3. 3.
    Burnett, G.E., Porter, J.M.: Ubiquitous computing within cars: designing controls for non-visual use. Int. J. Hum. Comput. Stud. 55(4), 521–531 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Carter, T., Seah, S.A., Long, B., Drinkwater, B., Subramanian, S.: UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. In: Proc. 26th annual ACM symposium on User interface software and technology (UIST ’13), pp. 505–514. ACM, New York (2013)Google Scholar
  5. 5.
    Cockburn, A., Gutwin, C., Scarr, J., Malacria, S.: Supporting novice to expert transitions in user interfaces. ACM Comput. Surv. 47(2) 1–36 (2014)Google Scholar
  6. 6.
    Dandekar, K., Raju, B.I., Srinivasan, M.A.: 3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J. Biomech. Eng. 125(5), 682–691 (2003)CrossRefGoogle Scholar
  7. 7.
    Dai, X., Colgate, J.E., Peshkin, M.A.: Lateralpad: A surface-haptic device that produces lateral forces on a bare finger. In: Proc. IEEE Haptics Symp., pp. 7–14 (2012)Google Scholar
  8. 8.
    Hart, S.G.: NASA-Task Load Index (NASA-TLX); 20 years later. In: Proc. Human Factors and Ergonomics Society 50th Annual Meeting, pp. 904–908. Santa Monica (2006)Google Scholar
  9. 9.
    Hoggan, E., Brewster, S.: New parameters for tacton design. In: CHI ’07 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’07), pp. 2417–2422. ACM, New York (2007)Google Scholar
  10. 10.
    Hou, X., Sourina, O.: Stable adaptive algorithm for six degrees-of-freedom haptic rendering in a dynamic environment. Vis. Comput. 29, 1063–1075 (2013)CrossRefGoogle Scholar
  11. 11.
    Israr, A., Bau, O., Kim, S-C., Poupyrev, I.: Tactile feedback on flat surfaces for the visually impaired. In: CHI ’12 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’12), pp. 1571–1576. ACM, New York (2012)Google Scholar
  12. 12.
    Jansen, Y., Karrer, T., Borchers, J.: MudPad: tactile feedback and haptic texture overlay for touch surfaces. In: Proc. ACM International Conference on Interactive Tabletops and Surfaces (ITS ’10), pp. 11–14. ACM, New York (2010)Google Scholar
  13. 13.
    Kim, S-C., Israr, A., Poupyrev, I.: Tactile rendering of 3D features on touch surfaces. In: Proc. 26th annual ACM symposium on User interface software and technology (UIST ’13), pp. 531–538. ACM, New York (2013)Google Scholar
  14. 14.
    Klatzky, R.L., Colgate, J.E.: rendering tactile features on touchscreens. Computer 47(11), 8–8 (2014)Google Scholar
  15. 15.
    Kuchenbecker, K.J., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Gr. 12(2), 219–230 (2006)CrossRefGoogle Scholar
  16. 16.
    Leiva, L.A., Sahami, A., Catala, A., Henze, N., Schmidt, A.: Text Entry on Tiny QWERTY Soft Keyboards. In: Proc. 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15), pp. 669–678. ACM, New York (2015)Google Scholar
  17. 17.
    MacLean, K.E.: Haptic interaction design for everyday interfaces. Rev. Hum. Factors Ergon. 4(1), 149–194 (2008)Google Scholar
  18. 18.
    Martinez, J., Garcia, A.S., Molina, J.P., Martinez, D., González, P.: An empirical evaluation of different haptic feedback for shape and texture recognition. Vis. Comput. 29, 111–121 (2013)CrossRefGoogle Scholar
  19. 19.
    Martinez, J., Garcia, A.S., Oliver, M., Molina, J.P., Gonzalez, P.: Identifying virtual 3D geometric shapes with a vibrotactile glove. IEEE Comput. Gr. Appl. 36(1), 42–51 (2016)CrossRefGoogle Scholar
  20. 20.
    Martínez, J., García, A.S., Oliver, M., Molina, J.P., González, P.: Vitaki: a vibrotactile prototyping toolkit for virtual reality and video games. Int. J. Hum. Comput. Interact. 30(11), 855–871 (2014)CrossRefGoogle Scholar
  21. 21.
    Meyer, D.J., Wiertlewski, M., Peshkin, M.A., Colgate, J.E.: Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces. Haptics Symposium (HAPTICS), IEEE, pp. 63–67 (2014)Google Scholar
  22. 22.
    Overvliet, K.E., Smeets, J.B.J., Brenner, E.: Parallel and serial search in haptics. Percept. Psychophys. 69(7), 1059–1069 (2007)CrossRefGoogle Scholar
  23. 23.
    Overvliet, K.E., Smeets, J.B.J., Brenner, E.: Haptic search with finger movements: using more fingers does not necessarily reduce search times. Exp. Brain Res. 182(3), 427–434 (2007)CrossRefGoogle Scholar
  24. 24.
    Overvliet, K.E., Smeets, J.B.J., Brenner, E.: Serial search for fingers of the same hand but not for fingers of different hands. Exp. Brain Res. 202(1), 261–264 (2010)CrossRefGoogle Scholar
  25. 25.
    Pitts, M.J., Burnett, G., Skrypchuk, L., Wellings, T., Attridge, A., Williams, M.A.: Visual-haptic feedback interaction in automotive touchscreens. Displays 33(1), 7–16 (2012)CrossRefGoogle Scholar
  26. 26.
    Poupyrev, I., Okabe, M., Maruyama, S.: Haptic feedback for pen computing: directions and strategies. In: CHI ’04 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’04), pp. 1309–1312. ACM, New York (2004)Google Scholar
  27. 27.
    Poupyrev, I., Maruyama, S.: Tactile interfaces for small touch screens. In: Proc. 16th annual ACM symposium on User interface software and technology (UIST ’03), pp. 217–220. ACM, New York (2003)Google Scholar
  28. 28.
    Robles-De-La-Torre, G.: The importance of the sense of touch in virtual and real environments. IEEE MultiMedia 13(3), 24–30 (2006)CrossRefGoogle Scholar
  29. 29.
    Seifert, J., Packeiser, M., Rukzio, E.: Adding Vibrotactile Feedback to Large Interactive Surfaces, Human–Computer Interaction—INTERACT. Springer, Berlin (2013)Google Scholar
  30. 30.
    Shin, H., Lim, J.M., Lee, J.U., Lee, G., Kyung, K.U.: Effect of tactile feedback for button GUI on mobile touch devices. ETRI J. 36(6), 979–987 (2014)CrossRefGoogle Scholar
  31. 31.
    Ware, J., Cha, E., Peshkin, M.A., Colgate, J.E., Klatzky, R.L.: Search efficiency for tactile features rendered by surface haptic displays. IEEE Trans. Haptics 7(4), 545–550 (2014)CrossRefGoogle Scholar
  32. 32.
    Wu, S., Sun, X., Wang, Q., Chen, J.: Tactile modeling and rendering image-textures based on electrovibration. Vis. Comput. doi: 10.1007/s00371-016-1214-3. Published online, 1 March 2016

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LoUISE Research Group, Computing Systems DepartmentUniversity of Castilla-La ManchaAlbaceteSpain

Personalised recommendations