The Visual Computer

, Volume 32, Issue 6–8, pp 1025–1034 | Cite as

Expressive chromatic accumulation buffering for defocus blur

  • Yuna Jeong
  • Sangmin Lee
  • Soonhyeon Kwon
  • Sungkil LeeEmail author
Original Article


This article presents a novel parametric model to include expressive chromatic aberrations in defocus blur rendering and its effective implementation using the accumulation buffering. Our model modifies the thin-lens model to adopt the axial and lateral chromatic aberrations, which allows us to easily extend them with nonlinear and artistic appearances beyond physical limits. For the dispersion to be continuous, we employ a novel unified 3D sampling scheme, involving both the lens and spectrum. We further propose a spectral equalizer to emphasize particular dispersion ranges. As a consequence, our approach enables more intuitive and explicit control of chromatic aberrations, unlike the previous physically-based rendering methods.


Chromatic aberration Defocus blur Spectral rendering Optical effect Lens system 



The Penguins, Fading-man, Tree (Downy Oak), (Golden) Bird, and Pegasus models are provided through the courtesy of, Riley Lewand, the Xfrog Inc.,, and the AIM@Shape Repository, respectively. Correspondence concerning this article can be addressed to Sungkil Lee.

Supplementary material

Supplementary material 1 (mp4 21899 KB)


  1. 1.
    Akenine-Möller, T., Munkberg, J., Hasselgren, J.: Stochastic rasterization using time-continuous triangles. In: Proc. Graphics Hardware, pp. 7–16 (2007)Google Scholar
  2. 2.
    Cook, R.L., Porter, T., Carpenter, L.: Distributed ray tracing. ACM Comput. Graph. 18(3), 137–145 (1984)CrossRefGoogle Scholar
  3. 3.
    Games, E.: Unreal engine. (2016). Accessed 21 Feb 2016
  4. 4.
    Gotanda, Y., Kawase, M., Kakimoto, M.: Real-time rendering of physically based optical effects in theory and practice. In: ACM SIGGRAPH Courses, p. 23. ACM, New York (2015)Google Scholar
  5. 5.
    Guy, S., Soler, C.: Graphics gems revisited: fast and physically-based rendering of gemstones. ACM Trans. Graph. 23(3), 231–238 (2004)CrossRefGoogle Scholar
  6. 6.
    Haeberli, P., Akeley, K.: The accumulation buffer: hardware support for high-quality rendering. ACM Comput. Graph. 24(4), 309–318 (1990)CrossRefGoogle Scholar
  7. 7.
    Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7(12), 701–702 (1964)CrossRefGoogle Scholar
  8. 8.
    Hanika, J., Dachsbacher, C.: Efficient monte carlo rendering with realistic lenses. Comput. Graph. Forum 33(2), 323–332 (2014)CrossRefGoogle Scholar
  9. 9.
    Hullin, M., Eisemann, E., Seidel, H.P., Lee, S.: Physically-based real-time lens flare rendering. ACM Trans. Graph. 30(4), 108:1–108:9 (2011)CrossRefGoogle Scholar
  10. 10.
    Hullin, M.B., Hanika, J., Heidrich, W.: Polynomial optics: a construction kit for efficient ray-tracing of lens systems. Comput. Graph. Forum 31(4), 1375–1383 (2012)CrossRefGoogle Scholar
  11. 11.
    Kolb, C., Mitchell, D., Hanrahan, P.: A realistic camera model for computer graphics. In: Proc. ACM SIGGRAPH, pp. 317–324. ACM, New York (1995)Google Scholar
  12. 12.
    Kraus, M., Strengert, M.: Depth-of-field rendering by pyramidal image processing. Comput. Graph. Forum 26(3), 645–654 (2007)CrossRefGoogle Scholar
  13. 13.
    Lee, S., Eisemann, E.: Practical real-time lens-flare rendering. Comput. Graph. Forum 32(4), 1–6 (2013)CrossRefGoogle Scholar
  14. 14.
    Lee, S., Eisemann, E., Seidel, H.P.: Depth-of-field rendering with multiview synthesis. ACM Trans. Graph. 28(5), 134:1–134:6 (2009)Google Scholar
  15. 15.
    Lee, S., Eisemann, E., Seidel, H.P.: Real-time lens blur effects and focus control. ACM Trans. Graph. 29(4), 65:1–65:7 (2010)Google Scholar
  16. 16.
    Lee, S., Kim, G.J., Choi, S.: Real-time depth-of-field rendering using splatting on per-pixel layers. Comput. Graph. Forum 27(7), 1955–1962 (2008)CrossRefGoogle Scholar
  17. 17.
    Lee, S., Kim, G.J., Choi, S.: Real-time depth-of-field rendering using anisotropically filtered mipmap interpolation. IEEE Trans. Vis. Comput. Graph. 15(3), 453–464 (2009)CrossRefGoogle Scholar
  18. 18.
    McGraw, T.: Fast Bokeh effects using low-rank linear filters. Vis. Comput. 31(5), 601–611 (2015)CrossRefGoogle Scholar
  19. 19.
    Polyanskiy, M.: Refractive index database. (2016). Accessed 21 Feb 2016
  20. 20.
    Potmesil, M., Chakravarty, I.: A lens and aperture camera model for synthetic image generation. ACM Comput. Graph. 15(3), 297–305 (1981)CrossRefGoogle Scholar
  21. 21.
    Rokita, P.: Generating depth of-field effects in virtual reality applications. IEEE Comput. Graph. Appl. 16(2), 18–21 (1996)CrossRefGoogle Scholar
  22. 22.
    Schedl, D.C., Wimmer, M.: A layered depth-of-field method for solving partial occlusion. J. WSCG 20(3), 239–246 (2012)Google Scholar
  23. 23.
    Sellmeier, W.: Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen. Annalen der Physik und Chemie 219(6), 272–282 (1871)CrossRefGoogle Scholar
  24. 24.
    Smith, T., Guild, J.: The CIE colorimetric standards and their use. Trans. Opt. Soc. 33(3), 73 (1931)CrossRefGoogle Scholar
  25. 25.
    Smith, W.J.: Modern Optical Engineering. McGraw-Hill, New York (2000)Google Scholar
  26. 26.
    Steinert, B., Dammertz, H., Hanika, J., Lensch, H.P.: General spectral camera lens simulation. Comput. Graph. Forum 30(6), 1643–1654 (2011)CrossRefGoogle Scholar
  27. 27.
    Thomas, S.W.: Dispersive refraction in ray tracing. Vis. Comput. 2(1), 3–8 (1986)CrossRefGoogle Scholar
  28. 28.
    Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with hammersley and halton points. J. Graph. Tools 2(2), 9–24 (1997)CrossRefGoogle Scholar
  29. 29.
    Wu, J., Zheng, C., Hu, X., Wang, Y., Zhang, L.: Realistic rendering of bokeh effect based on optical aberrations. Vis. Comput. 26(6–8), 555–563 (2010)CrossRefGoogle Scholar
  30. 30.
    Wu, J., Zheng, C., Hu, X., Xu, F.: Rendering realistic spectral Bokeh due to lens stops and aberrations. Vis. Comput. 29(1), 41–52 (2013)CrossRefGoogle Scholar
  31. 31.
    Zernike, F., Midwinter, J.E.: Applied Nonlinear Optics. Courier Corporation, North Chelmsford (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Sungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations