Advertisement

The Visual Computer

, Volume 32, Issue 10, pp 1293–1309 | Cite as

Interactive 3D content modeling for Digital Earth

  • Faramarz SamavatiEmail author
  • Adam Runions
Original Article

Abstract

Digital Earth is a global reference model for integrating, processing and visualizing geospatial datasets. In this reference model, various data-types, including Digital Elevation Models (DEM) and imagery (orthophotos), are universally and openly available for the entire globe. However, 3D content such as detailed terrains with features, man-made structures, 3D water bodies and 3D vegetation are not commonly available in Digital Earth. In this paper, we present an interactive system for the rapid creation and integration of these types of 3D content to augment Digital Earth. The inputs to our system include available data sources, such as DEM and imagery information depicting landscapes and urban environments. The proposed system employs sketch-based and image-assisted tools to support interactive creation of textured 3D content. For adding terrain features visible in orthophotos, and also the basin of water bodies, we use a multiscale least square surface fitting to generate an adaptive triangular subdivision. For modeling forests and vegetation, we use image-based techniques and take advantage of visible regions and colors of forests in orthophotos. For 3D man-made structures, starting from a single photograph, we provide a simple image-assisted sketching tool to extract these objects, correct for perspective distortion and place them into desired locations.

Keywords

Digital Earth Computer graphics Interactive modeling Sketch-based modeling Subdivision surfaces Image-based modeling 

Notes

Acknowledgments

We would like to deeply thank Kaveh Ketabchi for his numerous contributions to this paper. This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

  1. 1.
    Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski, R.: Building rome in a day. Commun. ACM 54(10), 105–112 (2011)CrossRefGoogle Scholar
  2. 2.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. TOG 28(3), 24 (2009)Google Scholar
  3. 3.
    Bernhardt, A., Maximo, A., Velho, L., Hnaidi, H., Cani, M.P.: Real-time terrain modeling using cpu-gpu coupled computation. In: 24th SIBGRAPI Conference, pp. 64–71. IEEE (2011)Google Scholar
  4. 4.
    Bolstad, P.: Gis fundamentals. A first text on Geographic Information Systems (2005)Google Scholar
  5. 5.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Visual. Comp. Graph. 14(1), 213–230 (2008)CrossRefGoogle Scholar
  6. 6.
    Brosz, J., Samavati, F., Sousa, M.: Terrain synthesis by-example. Adv. Comp. Graph. Comp. Vision 4, 58–77 (2007)CrossRefGoogle Scholar
  7. 7.
    de Carpentier, G.J., Bidarra, R.: Interactive gpu-based procedural heightfield brushes. In: Proceedings of the 4th International Conference on Foundations of Digital Games, pp. 55–62. ACM (2009)Google Scholar
  8. 8.
    Chen, T., Zhu, Z., Shamir, A., Hu, S.M., Cohen-Or, D.: 3-sweep: extracting editable objects from a single photo. ACM Trans. Graph. (TOG) 32(6), 195 (2013)Google Scholar
  9. 9.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. SIGGRAPH ’96, pp. 11–20. ACM (1996)Google Scholar
  11. 11.
    Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., Prusinkiewicz, P.: Realistic modeling and rendering of plant ecosystems. SIGGRAPH ’98, pp. 275–286. ACM (1998)Google Scholar
  12. 12.
    Do Carmo, M.P.: Differential Geometry of Curves and Surfaces, vol. 2. Prentice-hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  13. 13.
    Duda, R.O., Hart, P.E., et al.: Pattern Classification and Scene Analysis, vol. 3. Wiley, New York (1973)zbMATHGoogle Scholar
  14. 14.
    Gain, J., Marais, P., Straßer, W.: Terrain sketching. In: Proceedings of the 2009 symposium on Interactive 3D graphics and games, pp. 31–38. ACM (2009)Google Scholar
  15. 15.
    Gao, K., Rockwood, A.: Multi-sided attribute based modeling. In: Proceedings of the 11th IMA International Conference on Mathematics of Surfaces, IMA’05, pp. 219–232. Springer-Verlag, Berlin, Heidelberg (2005). doi: 10.1007/11537908_13
  16. 16.
    Goodchild, M.F.: Discrete global grids for digital earth. In: Proceedings of 1st International Conference on Discrete Global Grids (2000)Google Scholar
  17. 17.
    Gore, A.: The digital earth: understanding our planet in the 21st century. Aust. Surv. 43(2), 89–91 (1998)CrossRefGoogle Scholar
  18. 18.
    Habbecke, M., Kobbelt, L.: Linear analysis of nonlinear constraints for interactive geometric modeling. In: Computer Graphics Forum. 31, pp. 641–650. Wiley Online Library (2012)Google Scholar
  19. 19.
    Hammes, J.: Modeling of ecosystems as a data source for real-time terrain rendering. In: Digital Earth Moving, pp. 98–111. Springer (2001)Google Scholar
  20. 20.
    Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., Galin, E.: Feature based terrain generation using diffusion equation. In: Computer Graphics Forum. 29, pp. 2179–2186. Wiley Online Library (2010)Google Scholar
  21. 21.
    Irschara, A., Zach, C., Bischof, H.: Towards wiki-based dense city modeling. In: Computer Vision, 2007, ICCV 2007, IEEE 11th International Conference on, pp. 1–8 (2007)Google Scholar
  22. 22.
    Jenny, H., Jenny, B., Cartwright, W.E., Hurni, L.: Interactive local terrain deformation inspired by hand-painted panoramas. Cartograph. J. 48(1), 11–20 (2011)CrossRefGoogle Scholar
  23. 23.
    Jiang, N., Tan, P., Cheong, L.F.: Symmetric architecture modeling with a single image. ACM Trans. Graph. (TOG), 28, 113 (2009)Google Scholar
  24. 24.
    Kelly, T., Wonka, P.: Interactive architectural modeling with procedural extrusions. ACM Trans. Graph. (TOG), 30(2), 14 (2011)Google Scholar
  25. 25.
    Ketabchi, K., Runions, A., Samavati, F.: 3d maquetter: sketch-based 3d content modeling for digital earth. In: International Conference on Cyberworlds (CW) 2015, pp. 1–9. IEEE Computer Society (2015)Google Scholar
  26. 26.
    Košecká, J., Zhang, W.: Extraction, matching, and pose recovery based on dominant rectangular structures. Comp. Vision Image Underst. 100(3), 274–293 (2005)CrossRefGoogle Scholar
  27. 27.
    Lafarge, F., Mallet, C.: Building large urban environments from unstructured point data. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1068–1075. IEEE (2011)Google Scholar
  28. 28.
    Lane, B., Prusinkiewicz, P., et al.: Generating spatial distributions for multilevel models of plant communities. In: Graphics Interface, pp. 69–80. Citeseer (2002)Google Scholar
  29. 29.
    Lee, S.C., Huertas, A., Nevatia, R.: Modeling 3-d complex buildings with user assistance. In: Fifth IEEE Workshop on Applications of Computer Vision, 2000. pp. 170–177. IEEE (2000)Google Scholar
  30. 30.
    Lee, S.C., Jung, S.K., Nevatia, R.: Automatic pose estimation of complex 3d building models. In: Proceedings. Sixth IEEE Workshop on Applications of Computer Vision, 2002, (WACV 2002), pp. 148–152. IEEE (2002)Google Scholar
  31. 31.
    Lee, S.C., Jung, S.K., Nevatia, R.: Integrating ground and aerial views for urban site modeling. In: Proceedings of 16th International Conference on Pattern Recognition, 2002, vol. 4, pp. 107–112, IEEE (2002)Google Scholar
  32. 32.
    Lee, S.C., Nevatia, R.: Interactive 3d building modeling using a hierarchical representation. In: Higher-Level Knowledge in 3D Modeling and Motion Analysis., pp. 58–65. IEEE (2003)Google Scholar
  33. 33.
    Lee Staff, J.S., Angawi, S., Angawi, A., Rockwood, A.: A new terrain modeling technique for digital reconstruction–a case study. In: Proceedings of DMACH 2011 (2011)Google Scholar
  34. 34.
    Li, Z., Zhu, Q., Gold, C.: Digital Terrain Modeling: Principles and Methodology. CRC press, Boca Raton (2010)Google Scholar
  35. 35.
    Longay, S., Runions, A., Boudon, F., Prusinkiewicz, P.: Treesketch: interactive procedural modeling of trees on a tablet. In: Proceedings of the international symposium on sketch-based interfaces and modeling, pp. 107–120. Eurographics Association (2012)Google Scholar
  36. 36.
    Loop, C.: Smooth subdivision surfaces based on triangles. Ph.D. thesis (1987)Google Scholar
  37. 37.
    Losasso, F., Hoppe, H.: Geometry clipmaps: terrain rendering using nested regular grids. ACM Trans. Graph. (TOG), 23, 769–776 (2004)Google Scholar
  38. 38.
    Mahdavi-Amiri, A., Harrison, E., Samavati, F.: Hexagonal connectivity maps for digital earth. Int. J. Digital Earth 1–20 (2014)Google Scholar
  39. 39.
    Maidment, D.: Arc Hydro: GIS for Water Resources. No. v. 1 in Arc Hydro: GIS for Water Resources. ESRI Press (2002). https://books.google.ca/books?id=07vH7Sf0v6MC
  40. 40.
    Musialski, P., Wonka, P., Aliaga, D.G., Wimmer, M., Gool, L., Purgathofer, W.: A survey of urban reconstruction. In: Computer Graphics Forum, vol. 32, pp. 146–177. Wiley Online Library (2013)Google Scholar
  41. 41.
    Olsen, L., Samavati, F., Jorge, J.: Naturasketch: modeling from images and natural sketches. IEEE Comp. Graph. Appl. 31(6), 24–34 (2011)CrossRefGoogle Scholar
  42. 42.
    Olsen, L., Samavati, F.F.: Image-assisted modeling from sketches. In: Proceedings of Graphics Interface 2010, GI ’10, pp. 225–232 (2010)Google Scholar
  43. 43.
    Olsen, L., Samavati, F.F., Sousa, M.C., Jorge, J.A.: Sketch-based modeling: A survey. Comp. Graph. 33(1), 85–103 (2009)CrossRefGoogle Scholar
  44. 44.
    Pakdel, H.R., Samavati, F.: Incremental adaptive loop subdivision. In: Computational Science and Its Applications–ICCSA 2004, pp. 237–246. Springer (2004)Google Scholar
  45. 45.
    dos Passos, V.A., Igarashi, T.: Landsketch: A first person point-of-view example-based terrain modeling approach. In: Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling, pp. 61–68. ACM (2013)Google Scholar
  46. 46.
    Poullis, C., You, S.: Photorealistic large-scale urban city model reconstruction. IEEE Trans. Visual. Comp. Graph. 15(4), 654–669 (2009)CrossRefGoogle Scholar
  47. 47.
    Pusch, R., Samavati, F.: Local constraint-based general surface deformation. Shape Model. Int. Conf. (SMI) 2010, 256–260 (2010)CrossRefGoogle Scholar
  48. 48.
    Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D’Onghia, A.M.: A tree counting algorithm for precision agriculture tasks. Int. J. Digital Earth 6(1), 94–102 (2013)CrossRefGoogle Scholar
  49. 49.
    Schmidt, R., Khan, A., Kurtenbach, G., Singh, K.: On expert performance in 3d curve-drawing tasks. In: Proceedings of the 6th eurographics symposium on sketch-based interfaces and modeling, pp. 133–140. ACM (2009)Google Scholar
  50. 50.
    Severn, A., Samavati, F., Sousa, M.C.: Transformation strokes. In: Proceedings of the Third Eurographics Workshop on Sketch-Based Interfaces and Modeling, SBM’06, pp. 75–81 (2006)Google Scholar
  51. 51.
    Simakov, D., Caspi, Y., Shechtman, E., Irani, M.: Summarizing visual data using bidirectional similarity. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008., pp. 1–8. IEEE (2008)Google Scholar
  52. 52.
    Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys, M.: Interactive 3d architectural modeling from unordered photo collections. ACM Trans. Graph. (TOG), 27, 159 (2008)Google Scholar
  53. 53.
    Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural modelling for virtual worlds. pp. 31–50 (2014)Google Scholar
  54. 54.
    Stachniak, S., Stuerzlinger, W.: An algorithm for automated fractal terrain deformation. Comp. Graph. Artif. Intel. 1, 64–76 (2005)Google Scholar
  55. 55.
    Tan, P., Fang, T., Xiao, J., Zhao, P., Quan, L.: Single image tree modeling. ACM Trans. Graph. (TOG), 27, 108 (2008)Google Scholar
  56. 56.
    Tasse, F.P., Emilien, A., Cani, M.P., Hahmann, S., Dodgson, N.: Feature-based terrain editing from complex sketches. Comp. Graph. 45, 101–115 (2014)CrossRefGoogle Scholar
  57. 57.
    Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graph. (TOG) 27(1), 2 (2008)Google Scholar
  58. 58.
    Xiao, J., Fang, T., Zhao, P., Lhuillier, M., Quan, L.: Image-based street-side city modeling. ACM Trans. Graph. (TOG) 28(5), 114 (2009)CrossRefGoogle Scholar
  59. 59.
    Xue, T., Liu, J., Tang, X.: 3-d modeling from a single view of a symmetric object. IEEE Trans. Image Process. 21(9), 4180–4189 (2012)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Yang, L., Wu, X., Praun, E., Ma, X.: Tree detection from aerial imagery. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 131–137. ACM (2009)Google Scholar
  61. 61.
    Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. IEEE Trans. Visual. Comp. Graph. 13(4), 834–848 (2007)CrossRefGoogle Scholar
  62. 62.
    Zlatanova, S., Rahman, A.A., Shi, W.: Topological models and frameworks for 3d spatial objects. Comp. Geosci. 30(4), 419–428 (2004)CrossRefGoogle Scholar
  63. 63.
    Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 259–268. ACM Press/Addison-Wesley Publishing Co. (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations