Advertisement

Interactive multilevel focus+context visualization framework

Abstract

In this article, we present the construction of an interactive multilevel focus+context visualization framework for the navigation and exploration of large-scale 2D and 3D images. The presented framework utilizes a balanced multiresolution technique supported by a balanced wavelet transform (BWT). It extends the mode of focus+context visualization, where spatially separate magnification of regions of interest (ROIs) is performed, as opposed to in-place magnification. Each resulting visualization scenario resembles a tree structure, where the root constitutes the main context, each non-root internal node plays the dual roles of both focus and context, and each leaf solely represents a focus. Our developed prototype supports interactive manipulation of the visualization hierarchy, such as addition and deletion of ROIs and desired changes in their resolutions at any level of the hierarchy on the fly. We describe the underlying data structure efficiently support such operations. Changes in the spatial locations of query windows defining the ROIs trigger on-demand reconstruction queries. We explain in detail how to efficiently process such reconstruction queries within the hierarchy of details (wavelet coefficients) contained in the BWT in order to ensure real-time feedback. As the BWT need only be constructed once in a preprocessing phase on the server-side and robust on-demand reconstruction queries require minimal data communication overhead, our presented framework is a suitable candidate for efficient web-based visualization of complex large-scale imagery. We also discuss the performance characteristics of our proposed framework from various aspects, such as time and space complexities and achieved frame rates.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Bartels, R., Samavati, F.: Multiresolutions numerically from subdivisions. Comput. Graph. 35(2), 185–197 (2011). doi:10.1016/j.cag.2010.12.001

  2. 2.

    Bartels, R.H., Golub, G.H., Samavati, F.F.: Some observations on local least squares. BIT Numer. Math. 46(3), 455–477 (2006). doi:10.1007/s10543-006-0075-y

  3. 3.

    Card, S.K., Nation, D.: Degree-of-interest trees: a component of an attention-reactive user interface. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’02, pp. 231–245. ACM, New York (2002). doi:10.1145/1556262.1556300

  4. 4.

    Chaikin, G.M.: An algorithm for high-speed curve generation. Comput. Graph. Image Process. 3(4), 346–349 (1974). doi:10.1016/0146-664X(74)90028-8

  5. 5.

    Cohen, M., Brodlie, K.: Focus and context for volume visualization. In: Proceeding of the Theory and Practice of Computer Graphics Conference, pp. 32–39. IEEE (2004). doi:10.1109/TPCG.2004.1314450

  6. 6.

    Cossalter, M., Mengshoel, O.J., Selker, T.: Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data. In: Proceeding of the SPIE Conference on Visualization and Data Analysis, vol. 8654, pp. 1–15 (2013). doi:10.1117/12.2005096.865403

  7. 7.

    Hasan, M., Samavati, F.F., Jacob, C.: Multilevel focus+context visualization using balanced multiresolution. In: Proceedings of the International Conference on Cyberworlds, CW, pp. 145–152. IEEE Computer Society (2014). doi:10.1109/CW.2014.28

  8. 8.

    Hasan, M., Samavati, F.F., Sousa, M.C.: Balanced multiresolution for symmetric/antisymmetric filters. Graphi. Models 78, 36–59 (2015). doi:10.1016/J.GMOD.2015.01.001

  9. 9.

    Hauser, H.: Generalizing focus+context visualization. In: Bonneau, G.P., Ertl, T., Nielson, G. (eds.) Scientific Visualization: The Visual Extraction of Knowledge from Data, Mathematics and Visualization, pp. 305–327. Springer, Berlin (2006). doi:10.1007/3-540-30790-7_18

  10. 10.

    Hodges, E.R.S.: The Guild Handbook of Scientific Illustration. Wiley, Hoboken (2003)

  11. 11.

    Hsu, W.H., Ma, K.L., Correa, C.: A rendering framework for multiscale views of 3D models. In: Proceedings of the SIGGRAPH Asia Conference, SA, pp. 131:1–131:10. ACM, New York (2011). doi:10.1145/2024156.2024165

  12. 12.

    Kalkofen, D., Mendez, E., Schmalstieg, D.: Interactive focus and context visualization for augmented reality. In: IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR, pp. 191–201. IEEE (2007). doi:10.1109/ISMAR.2007.4538846

  13. 13.

    LaMar, E., Hamann, B., Joy, K.I.: Multiresolution techniques for interactive texture-based volume visualization. In: Proceedings of the Conference on Visualization. VIS, pp. 355–361. IEEE Computer Society Press, Los Alamitos (1999)

  14. 14.

    Losasso, F., Hoppe, H.: Geometry clipmaps: terrain rendering using nested regular grids. In: ACM SIGGRAPH Papers, SIGGRAPH, pp. 769–776. ACM, New York (2004). doi:10.1145/1186562.1015799

  15. 15.

    Mendez, E., Kalkofen, D., Schmalstieg, D.: Interactive context-driven visualization tools for augmented reality. In: IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR, pp. 209–218. IEEE (2006). doi:10.1109/ISMAR.2006.297816

  16. 16.

    Packer, J.F.: Focus+context via snaking paths. Master’s thesis, Department of Computer Science, University of Calgary, Calgary (2013). http://hdl.handle.net/11023/755

  17. 17.

    Plate, J., Tirtasana, M., Carmona, R., Fröhlich, B.: Octreemizer: A hierarchical approach for interactive roaming through very large volumes. In: Proceedings of the Symposium on Data Visualisation, VISSYM, pp. 53–60. Eurographics Association, Aire-la-Ville, Switzerland (2002). doi:10.2312/VisSym/VisSym02/053-060

  18. 18.

    Ropinski, T., Viola, I., Biermann, M., Hauser, H., Hinrichs, K.: Multimodal visualization with interactive closeups. In: Proceeding of the Theory and Practice of Computer Graphics Conference, pp. 17–24. Eurographics Association (2009). doi:10.2312/LocalChapterEvents/TPCG/TPCG09/017-024

  19. 19.

    Samavati, F.F., Bartels, R.H.: Multiresolution curve and surface representation: reversing subdivision rules by least-squares data fitting. Comput. Graph. Forum 18(2), 97–119 (1999). doi:10.1111/1467-8659.00361

  20. 20.

    Samavati, F.F., Bartels, R.H., Olsen, L.: Local B-spline multiresolution with examples in iris synthesis and volumetric rendering. In: Yanushkevich, S.N., Gavrilova, M.L., Wan, P.S.P., Srihari, S.N. (eds.) Image Pattern Recognition: Synthesis and Analysis in Biometrics, Machine Perception and Artificial Intelligence, vol. 67, pp. 65–102. World Scientific Publishing, Singapore (2007). doi:10.1142/9789812770677_0003

  21. 21.

    Suter, S., Guitian, J.I., Marton, F., Agus, M., Elsener, A., Zollikofer, C., Gopi, M., Gobbetti, E., Pajarola, R.: Interactive multiscale tensor reconstruction for multiresolution volume visualization. IEEE Trans. Vis. Compu. Graph. 17(12), 2135–2143 (2011). doi:10.1109/TVCG.2011.214

  22. 22.

    Taerum, T., Sousa, M.C., Samavati, F.F., Chan, S., Mitchell, J.R.: Real-time super resolution contextual close-up of clinical volumetric data. In: Proceedings of the Joint Eurographics—IEEE VGTC Symposium on Visualization, EuroVis, pp. 347–354. Eurographics Association (2006). doi:10.2312/VisSym/EuroVis06/347-354

  23. 23.

    Tu, Y., Shen, H.W.: Balloon focus: a seamless multi-focus+context method for treemaps. IEEE Trans. Vis. Comput. Graph. 14(6), 1157–1164 (2008). doi:10.1109/TVCG.2008.114

  24. 24.

    Wang, C., Shen, H.W.: Hierarchical navigation interface: leveraging multiple coordinated views for level-of-detail multiresolution volume rendering of large scientific data sets. In: Proceedings of the International Conference on Information Visualisation, pp. 259–267. IEEE (2005). doi:10.1109/IV.2005.57

  25. 25.

    Wang, Y.S., Wang, C., Lee, T.Y., Ma, K.L.: Feature-preserving volume data reduction and focus+context visualization. IEEE Trans. Vis. Comput. Graph. 17(2), 171–181 (2011). doi:10.1109/TVCG.2010.34

  26. 26.

    Wong, P.C., Shen, H.W., Johnson, C., Chen, C., Ross, R.B.: The top 10 challenges in extreme-scale visual analytics. IEEE Comput. Graph. Appl. 32(4), 63–67 (2012). doi:10.1109/MCG.2012.87

Download references

Acknowledgments

This research received generous support from the Natural Sciences and Engineering Research Council (NSERC) of Canada, Alberta Innovates Technology Futures (AITF), Alberta Enterprise and Advanced Education, and Network of Centres of Excellence (NCE) of Canada in Graphics, Animation and New Media (GRAND). We would like to thank Mario Costa Sousa for his insightful discussions and Troy Alderson for his helpful editorial comments.

Author information

Correspondence to Mahmudul Hasan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 62302 KB)

Supplementary material 1 (mp4 62302 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasan, M., Samavati, F.F. & Jacob, C. Interactive multilevel focus+context visualization framework. Vis Comput 32, 323–334 (2016) doi:10.1007/s00371-015-1180-1

Download citation

Keywords

  • Focus+context visualization
  • Contextual close-up
  • Multilevel hierarchy
  • Balanced decomposition
  • Perfect reconstruction
  • Balanced wavelet transform