The Visual Computer

, Volume 33, Issue 1, pp 85–98 | Cite as

Fluid re-simulation based on physically driven model from video

Original Article


Customizing a desired naturalistic fluid simulation result from video to obtain similar artistic effect is significant in practice. But art-directed customizing is challengeable due to the chaotic nature of the physics contained in it, and this still remains to be a difficult task in spite of rapid advancements of computer graphics during the last two decades. This paper focuses on the problem of physically based fluid re-simulation which is foundational to customize desired naturalistic simulation result from video example. In the previous achievements, conventional algorithms primarily recover 3D geometry of fluid surface or obtain the velocity of fluid particles in video. However, to launch new derivative results, just geometry and velocity are not enough, and physically based driven models are promising. We present a novel method that is capable of efficiently recovering physically driven model from an existing video. We advocate a new approach to calculate the velocity and non-normalized surface geometry under the constraints of the appearance and dynamic behavior of the example fluid in multi-scale framework, and use the calculated physical properties quickly to recover the fluid-driven model. In particular, to calculate the surface geometry more accurately, we introduce a scale factor between normalized geometry and non-normalized geometry to acquire a more accurate result. We propose a novel recovery algorithm, in which the particle densities of lattice Boltzmann method can be recovered more accurately from matching fluid advection geometry with the calculated non-normalized geometry. Fluid re-simulations with different types of density can be achieved, including constrained particle density, auto-advection density, and enhanced particle density. We demonstrate our results in several challenging scenarios and provide qualitative evaluation to our method. Some applications based on our approach are also demonstrated in the implementation.


Fluid Re-simulation Non-normalized geometry Physically driven model Video Geometry scale factor 


  1. 1.
    Pickup, D., Li, C., Cosker, D.: Reconstructing mass-conserved water surfaces using shape from shading and optical flow. ACCV 189–201 (2010). doi:10.1007/978-3-642-19282-1_16
  2. 2.
    Li, C., Shaw, M., Pickup, D.: Realtime video based water surface approximation. In: Conference for IEEE, Visual Media Production, pp. 109–117(2011). doi:10.1109/CVMP.2011.19
  3. 3.
    Li, C., Pickup, D., Saunders, T.: Water surface modeling from a single viewpoint video. IEEE Trans. Vis. Comput. Graph. 19(7), 1242–1251 (2013). doi:10.1109/TVCG.2012.302 CrossRefGoogle Scholar
  4. 4.
    Yu, M.Q., Quan, H.Y.: Fluid surface reconstruction based on specular reflection model. Comput. Anim. Virtual Worlds 24(5), 497–510 (2013). doi:10.1002/cav.1526 CrossRefGoogle Scholar
  5. 5.
    Yu, M.Q., Quan, H.Y., Song, X.: Realistic fluid real-time reconstruction. Aided Des. Comput. Graph. 25(3), 622–630 (2013)Google Scholar
  6. 6.
    Paris, S., Chang, W., Kozhushnyan, O.I.: Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27(3), 30 (2008)CrossRefGoogle Scholar
  7. 7.
    Tan, P., Fang, T., Xiao, J.: Single image tree modeling. ACM Trans. Graph. (TOG) ACM 27(5), 108 (2008). doi:10.1145/1409060.1409061. Accessed 10 Dec 2008
  8. 8.
    Murase, H.: Surface shape reconstruction of a nonrigid transport object using refraction and motion. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 1045–1052 (1992). doi:10.1109/34.159906 CrossRefGoogle Scholar
  9. 9.
    Morris, N.J.W., Kutulakos, K.N.: Dynamic refraction stereo. In: Proceedings of the International Conference on Computer Vision Computer Vision, pp. 1573–1580 (2005). doi:10.1109/ICCV.2005.79
  10. 10.
    Balschbach, G., Klinke, J., Jähne, B.: Multichannel shape from shading techniques for moving specular surfaces. In: Proceedings of the European Conference on Computer Vision, pp. 170–184 (1998). doi:10.1007/BFb0054740
  11. 11.
    Chetverikov, D.: Particle image velocimetry by feature tracking. In: Computer Analysis of Images and Patterns, pp. 325–332. Springer, Berlin (2001). doi:10.1007/3-540-44692-3_40
  12. 12.
    Corpetti, T., Heitz, D., Arroyo, G.: Fluid experimental flow estimation based on an optical-flow scheme. Exp. Fluids 40(1), 80–97 (2006). doi:10.1007/s00348-005-0048-y CrossRefGoogle Scholar
  13. 13.
    Sakaino, H.: Fluid motion estimation method based on physical properties of waves. Comput. Vis. Pattern Recognit. 1–8 (2008). doi:10.1109/CVPR.2008.4587532
  14. 14.
    Ray, N.: Computation of fluid and particle motion from a time-sequenced image pair: a global outlier identification approach. IEEE Trans. Image Process. 20(10), 2925–2936 (2011). doi:10.1109/TIP.2011.2142005 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Quan, H.Y., Wang, C.B.: An effective method of calculation of motion vectors of fluid. Chin. J. Comput. 36(9), 1834–1842 (2013)Google Scholar
  16. 16.
    Horn, B.K., Schunck, B.G.: Determining optical flow. In: Technical Symposium East. International Society for Optics and Photonics, pp. 319–331(1981). doi:10.1117/12.965761
  17. 17.
    Enric, M., Pérez, J.S., Kondermann, D.: Horn–Schunck optical flow with a multi-scale strategy. In: Image Processing On Line, pp. 151–172(2013). doi:10.5201/ipol
  18. 18.
    Doshi, A., Bors, A.G.: Navier–Stokes formulation for modelling turbulent optical flow. In: BMVC, pp. 1–10 (2007)Google Scholar
  19. 19.
    Corpetti, T., Mémin, É., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002). doi:10.1109/34.990137 CrossRefMATHGoogle Scholar
  20. 20.
    Gregson, J., Ihrke, I., Thuerey, N.: From capture to simulation-connecting forward and inverse problems in fluids. ACM Trans. Graph. 33, 11 (2014). doi:10.1145/2601097.2601147. Accessed 10 Aug 2014
  21. 21.
    Wang, H., Liao, M., Zhang, Q.: Physically guided liquid surface modeling from videos. ACM Trans. Graph. (TOG). ACM 28(3), 90 (2009). doi:10.1145/1576246.1531396. Accessed 3 Aug 2009
  22. 22.
    Kim, T., Thürey, N., James, D.: Wavelet turbulence for fluid simulation. ACM Trans. Graph. (TOG). ACM 27(3), 50 (2008). doi:10.1145/1360612.1360649. Accessed 22 Aug 2008
  23. 23.
    Mullen, P., Crane, K., Pavlov, D.: Energy-preserving integrators for fluid animation. ACM Trans. Graph. (TOG) 28(3), 38 (2009). doi:10.1145/1576246.1531344. Accessed 8 Jul 2009
  24. 24.
    Klingner, B.M., Feldman, B.E., Chentanez, N.: Fluid animation with dynamic meshes. ACM Trans. Graph. (TOG) ACM 25(3), 820–825 (2006). doi:10.1145/1179352.1141961. Accessed 3 Aug 2006
  25. 25.
    Lentine, M., Zheng, W., Fedkiw, R.: A novel algorithm for incompressible flow using only a coarse grid projection. ACM Trans. Graph. (TOG) ACM 29(4), 114 (2010). doi:10.1145/1833349.1778851. Accessed 29 Dec 2010
  26. 26.
    Kim, T., Delaney, J.: Subspace fluid re-simulation. ACM Trans. Graph. (TOG) 32(4), 62 (2013). doi:10.1145/2461912.2461987. Accessed 29 May 2013
  27. 27.
    Rasmussen, N., Enright, D., Nguyen, D.: Directable photorealistic liquids. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, pp. 193-202 (2004). doi:10.1145/1028523.1028549. Accessed 23 Aug 2004
  28. 28.
    Naoya, I.,Ryusuke, S., Shoji, K., Shigeo, M.: Estimating fluid simulation parameters from videos. In: Proceedings of ACM SIGGRAPH,Poster (2011). doi:10.1145/2037715.2037719. Accessed 7 Aug 2011
  29. 29.
    Yang, M., Chen, W.J.: Fluid simulation with adaptively sharpening and embedded boundary conditions. Vis. Comput. 28(5), 425–434 (2012). doi:10.1007/s00371-011-0624-5 CrossRefGoogle Scholar
  30. 30.
    Patel, S., Tessendorf, J., Molemaker, J.: Monocoupled 3D and 2D river simulations. In: Proceedings of ACM/Eurographics Symposium on Computer Animation (2009)Google Scholar
  31. 31.
    Zhang, G.J., Zhu, D.M., Qiu, X.J., Wang, Z.Q.: Skeleton-based control of fluid animation. Vis. Comput. 27(3), 199–210 (2011). doi:10.1007/s00371-010-0526-y CrossRefGoogle Scholar
  32. 32.
    Qian, Y.H., Humières, D.D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)CrossRefMATHGoogle Scholar
  33. 33.
    Wang, C.B., Zhang, Q.: Realistic rendering of free surface fluid based on lattice Boltzmann method. Comput.-Aided Des. Comput. Graph. 23(1), 104–110 (2011)MathSciNetGoogle Scholar
  34. 34.
    Thomas, G., Flores-Tapia, D., Pistorius, S.: Histogram specification: a fast and flexible method to process digital images. IEEE Trans. Instrum. Meas. 60(5), 1565–1578 (2011). doi:10.1109/TIM.2010.2089110 CrossRefGoogle Scholar
  35. 35.
    Péteri, R., Fazekas, S., Huiskes, M.J.: DynTex: a comprehensive database of dynamic textures. Pattern Recognit. Lett. 31(12), 1627–1632 (2010). Accessed 1 Sept 2010

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.East China Normal UniversityShanghaiChina

Personalised recommendations