The Visual Computer

, Volume 33, Issue 1, pp 17–31 | Cite as

A comprehensive framework for modeling heterogeneous objects

  • Francisco Conde-Rodríguez
  • Juan-Carlos Torres
  • Ángel-Luis García-Fernández
  • Francisco-Ramón Feito-Higueruela
Original Article


Many real objects are heterogeneous. They are composed of diverse materials, which are present in varying proportions. Materials inside the solid do not have to be uniformly distributed. So, methods capable of accurately model not only the boundary of the solid, but also the distribution of material in every single point of its interior, are needed. In this paper we propose a new framework for modeling heterogeneous objects. The framework is comprehensive as it characterizes precisely heterogeneous objects, defines an adequate mathematical model that captures the essence of such objects, and a computational representation to represent the modeled objects in a computer. Our framework is based on Béziér hyperpatches and solves the main problems of this mathematical tool. We have implemented it completely in order to check whether it is possible to precisely model real objects.


Object modeling Heterogeneous objects Béziér 

Mathematics Subject Classification




This work has been partially funded by the Spanish Ministry of Economy and Competitiveness through Grants TIN2014 58218-R and TIN2014-60956-R with ERDF funds.


  1. 1.
    Casale, M., Stanton, E.: An overview of analytic solid modeling. IEEE Comput. Graph. Appl. 5(2), 45–56 (1985). doi: 10.1109/MCG.1985.276402 CrossRefGoogle Scholar
  2. 2.
    Conde Rodriguez, F.A., Torres Cantero, J.: A simple validity condition for b-spline hyperpatches. In: Proceedings of Eurographics, 2001, short presentations (2001)Google Scholar
  3. 3.
    Hua, J., He, Y., Qin, H.: Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines. In: ACM Symposium on Solid Modeling and Applications, SM, pp. 47–58 (2004)Google Scholar
  4. 4.
    Hua, J., He, Y., Qin, H.: Trivariate simplex splines for inhomogeneous solid modeling in engineering design. J. Comput. Inf. Sci. Eng. 5(2), 149–157 (2005). doi: 10.1115/1.1881352 CrossRefGoogle Scholar
  5. 5.
    Jackson, T., Liu, H., Patrikalakis, N., Sachs, E., Cima, M.: Modeling and designing functionally graded material components for fabrication with local composition control. Mate. Des. 20(2–3), 63–75 (1999). doi: 10.1016/S0261-3069(99)00011-4 CrossRefGoogle Scholar
  6. 6.
    Kou, X., Tan, S.: Heterogeneous object modeling: a review. CAD Comput. Aided Des. 39(4), 284–301 (2007). doi: 10.1016/j.cad.2006.12.007 CrossRefGoogle Scholar
  7. 7.
    Kumar, V., Dutta, D.: An approach to modeling and representation of heterogeneous objects. J. Mech. Des. Trans. ASME 120, 659–667 (1998). doi: 10.1115/1.2829329 CrossRefGoogle Scholar
  8. 8.
    Lasser, D.: Bernstein-bézier representation of volumes. Comput. Aided Geom. Des. 2(1–3), 145–149 (1985). doi: 10.1016/0167-8396(85)90018-4 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mantyla, M.: An Introduction to Solid Modeling. Computer Science Press, College Park, MD (1988)Google Scholar
  10. 10.
    Mortenson, M.E.: Geometric Modeling. Wiley, New York (1985)Google Scholar
  11. 11.
    Ochiai, K.: Tire for motorcycle. Sumitomo Rubber Industries, Ltd. In: Kobeshi (JP) Assignee. US Patent 7,201,198 (2007)Google Scholar
  12. 12.
    Qian, X., Dutta, D.: Physics-based modeling for heterogeneous objects. J. Mech. Des. Trans. ASME 125(3), 416–427 (2003). doi: 10.1115/1.1582877 CrossRefGoogle Scholar
  13. 13.
    Requicha, A.G.: Representations for rigid solids: theory, methods, and systems. ACM Comput. Surv. 12(4), 437–464 (1980). doi: 10.1145/356827.356833 CrossRefGoogle Scholar
  14. 14.
    Schmitt, B., Pasko, A., Schlick, C.: Constructive sculpting of heterogeneous volumetric objects using trivariate b-splines. Vis. Comput. 20(2–3), 130–148 (2004). doi: 10.1007/s00371-003-0236-9 Google Scholar
  15. 15.
    Warkhedkar, R., Bhatt, A.: Material-solid modeling of human body: a heterogeneous b-spline based approach. CAD Comput. Aided Des. 41(8), 586–597 (2009). doi: 10.1016/j.cad.2008.10.016 CrossRefGoogle Scholar
  16. 16.
    Yang, P., Qian, X.: A b-spline-based approach to heterogeneous objects design and analysis. CAD Comput. Aided Des. 39(2), 95–111 (2007). doi: 10.1016/j.cad.2006.10.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Francisco Conde-Rodríguez
    • 1
  • Juan-Carlos Torres
    • 2
  • Ángel-Luis García-Fernández
    • 1
  • Francisco-Ramón Feito-Higueruela
    • 1
  1. 1.Departamento de InformáticaUniversity of JaénJaénSpain
  2. 2.Departamento de Lenguajes y Sistemas Informáticos, ETSIITUniversity of GranadaGranadaSpain

Personalised recommendations