The Visual Computer

, Volume 32, Issue 2, pp 217–241 | Cite as

Retrieval and classification methods for textured 3D models: a comparative study

  • S. Biasotti
  • A. Cerri
  • M. Aono
  • A. Ben Hamza
  • V. Garro
  • A. Giachetti
  • D. Giorgi
  • A. Godil
  • C. Li
  • C. Sanada
  • M. Spagnuolo
  • A. Tatsuma
  • S. Velasco-Forero
Original Article

Abstract

This paper presents a comparative study of six methods for the retrieval and classification of textured 3D models, which have been selected as representative of the state of the art. To better analyse and control how methods deal with specific classes of geometric and texture deformations, we built a collection of 572 synthetic textured mesh models, in which each class includes multiple texture and geometric modifications of a small set of null models. Results show a challenging, yet lively, scenario and also reveal interesting insights into how to deal with texture information according to different approaches, possibly working in the CIELab as well as in modifications of the RGB colour space.

Keywords

Shape retrieval Shape classification Textured 3D models 

References

  1. 1.
    Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633 (2011)Google Scholar
  2. 2.
    Biasotti, S., Cerri, A., Abdelrahman, M., Aono, M., Ben Hamza, A., El-Melegy, M., Farag, A., Garro, V., Giachetti, A., Giorgi, D., Godil, A., Li, C., Liu, Y.J., Martono, H.Y., Sanada, C., Tatsuma, A., Velasco-Forero, S., Xu, C.X.: Retrieval and classification on textured 3D models. In: Eurographics Workshop on 3D Object Retrieval (3DOR), pp. 111–120 (2014)Google Scholar
  3. 3.
    Biasotti, S., Cerri, A., Bronstein, A., Bronstein, M.: Quantifying 3D shape similarity using maps: recent trends, applications and perspectives. In: Lefebvre, S., Spagnuolo, M. (eds.) EG 2014—STARs, pp. 135–159 (2014)Google Scholar
  4. 4.
    Biasotti, S., Cerri, A., Giorgi, D., Spagnuolo, M.: PHOG: photometric and geometric functions for textured shape retrieval. Comput. Graph. Forum 32(5), 13–22 (2013)CrossRefGoogle Scholar
  5. 5.
    Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theor. Comput. Sci. 392(1–3), 5–22 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Size functions for comparing 3D models. Pattern Recogn. 41(9), 2855–2873 (2008)MATHCrossRefGoogle Scholar
  7. 7.
    Biasotti, S., Spagnuolo, M., Falcidieno, B.: Grouping real functions defined on 3D surfaces. Comput. Graph. 37(6), 608–619 (2013)CrossRefGoogle Scholar
  8. 8.
    Cerri, A., Biasotti, S., Abdelrahman, M., Angulo, J., Berger, K., Chevallier, L., El-Melegy, M., Farag, A., Lefebvre, F., Giachetti, A., Guermoud, H., Liu, Y.J., Velasco-Forero, S., Vigouroux, J., Xu, C.X., Zhang, J.B.: SHREC’13 track: retrieval on textured 3D models. In: Eurographics Workshop on 3D Object Retrieval (3DOR), pp. 73–80 (2013)Google Scholar
  9. 9.
    Cerri, A., Landi, C.: The persistence space in multidimensional persistent homology. In: Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B. (eds.) Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 7749, pp. 180–191. Springer, Berlin (2013)Google Scholar
  10. 10.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cortelazzo, G., Orio, N.: Retrieval of colored 3D models. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 986–993 (2006)Google Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)Google Scholar
  13. 13.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99), pp. 317–324. ACM Press/Addison-Wesley Publishing Co., New York (1999)Google Scholar
  14. 14.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Surveys on Discrete and Computational Geometry, Contemp. Math., vol. 453, pp. 257–282. Am. Math. Soc., Providence (2008)Google Scholar
  16. 16.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD), pp. 226–231 (1996)Google Scholar
  17. 17.
    Fairchild, M.D.: Color Appearance Models. Wiley, New York (2005)Google Scholar
  18. 18.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Finlayson, G.: Coefficient Color Constancy. Simon Fraser University, Burnaby (1995)Google Scholar
  20. 20.
    Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern Recognit. Image Anal. 9(4), 596–603 (1999)Google Scholar
  21. 21.
    Funkhouser, T., Kazhdan, M., Min, P., Shilane, P.: Shape-based retrieval and analysis of 3D models. Commun. ACM 48(6), 58–64 (2005)CrossRefGoogle Scholar
  22. 22.
    Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28(5), 1405–1413 (2009)CrossRefGoogle Scholar
  23. 23.
    Gevers, T., Smeulders, A.W.: Pictoseek: combining color and shape invariant features for image retrieval. IEEE Trans. Image Process. 9(1), 102–119 (2000)CrossRefGoogle Scholar
  24. 24.
    Giachetti, A., Lovato, C.: Radial symmetry detection and shape characterization with the multiscale area projection transform. Comput. Graph. Forum 31(5), 1669–1678 (2012)CrossRefGoogle Scholar
  25. 25.
    Giorgi, D., Attene, M., Patane, G., Marini, S., Pizzi, C., Biasotti, S., Spagnuolo, M., Falcidieno, B., Corvi, M., Usai, L., Roncarolo, L., Garibotto, G.: A critical assessment of 2D and 3D face recognition algorithms. In: IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 79–84 (2009)Google Scholar
  26. 26.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. 21(5), 433–449 (1999)CrossRefGoogle Scholar
  27. 27.
    Kanezaki, A., Harada, T., Kuniyoshi, Y.: Partial matching of real textured 3D objects using color cubic higher-order local auto-correlation features. Vis. Comput. 26(10), 1269–1281 (2010)CrossRefGoogle Scholar
  28. 28.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proceedings of the First Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP’03), pp. 156–164. Eurographics Association, Aire-la-Ville (2003)Google Scholar
  29. 29.
    Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)MATHCrossRefGoogle Scholar
  30. 30.
    Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Photometric heat kernel signatures. In: Proceedings of the Third International Conference on Scale Space and Variational Methods in Computer Vision (SSVM’11), pp. 616–627. Springer, Berlin (2012)Google Scholar
  31. 31.
    Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Raviv, D., Kimmel, R.: Affine-invariant photometric heat kernel signatures. In: Eurographics Workshop on 3D Object Retrieval (3DOR), pp. 39–46 (2012)Google Scholar
  32. 32.
    Kovnatsky, A., Raviv, D., Bronstein, M., Bronstein, A.M., Kimmel, R.: Geometric and photometric data fusion in non-rigid shape analysis. Numer. Math. Theor. Methods Appl. 6(1), 199–222 (2013)MathSciNetMATHGoogle Scholar
  33. 33.
    Kuhn, H.W.: The hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)CrossRefGoogle Scholar
  34. 34.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2169–2178 (2006)Google Scholar
  35. 35.
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00), pp. 131–144. ACM Press/Addison-Wesley Publishing Co., New York (2000)Google Scholar
  36. 36.
    Li, C.: Spectral geometric methods for deformable 3D shape retrieval. Master’s thesis, Concordia University, Montreal (2013)Google Scholar
  37. 37.
    Li, C., Ben Hamza, A.: Symmetry discovery and retrieval of nonrigid 3D shapes using geodesic skeleton paths. Multimed. Tools Appl. 72(2), 1027–1047 (2014)CrossRefGoogle Scholar
  38. 38.
    Li, C., Ben Hamza, A.: Intrinsic spatial pyramid matching for deformable 3D shape retrieval. Int. J. Multimed. Inf. Retr. 2(4), 261–271 (2013)CrossRefGoogle Scholar
  39. 39.
    Li, C., Ben Hamza, A.: A multiresolution descriptor for deformable 3D shape retrieval. Vis. Comput. 29, 513–524 (2013)CrossRefGoogle Scholar
  40. 40.
    Li, C., Ben Hamza, A.: Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey. Multimed. Syst. 20, 253–281 (2014)CrossRefGoogle Scholar
  41. 41.
    Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1995–2002 (2014)Google Scholar
  42. 42.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. In: Eurographics Workshop on 3D Object Retrieval (3DOR), pp. 79–88 (2011)Google Scholar
  43. 43.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen, H., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013)CrossRefGoogle Scholar
  44. 44.
    Ling, H., Jacobs, D.: Deformation invariant image matching. In: IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1466–1473 (2005)Google Scholar
  45. 45.
    Liu, Y.J., Zheng, Y.F., Lv, L., Xuan, Y.M., Fu, X.L.: 3D model retrieval based on color \(+\) geometry signatures. Vis. Comput. 28(1), 75–86 (2012)CrossRefGoogle Scholar
  46. 46.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  47. 47.
    Loy, G., Zelinsky, A.: Fast radial symmetry for detecting points of interest. IEEE T. Pattern Anal. 25(8), 959–973 (2003)CrossRefGoogle Scholar
  48. 48.
    Matthews, B.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405(2), 442–451 (1975)CrossRefGoogle Scholar
  49. 49.
    Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA and de-noising in feature spaces. In: Advances in Neural Information Processing Systems II, pp. 536–542. MIT Press, USA (1999)Google Scholar
  50. 50.
    Mitra, N.J., Pauly, M., Wand, M., Ceylan, D.: Symmetry in 3D geometry: extraction and applications. Comput. Graph. Forum 32(6), 1–23 (2013)CrossRefGoogle Scholar
  51. 51.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  52. 52.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)CrossRefGoogle Scholar
  53. 53.
    Pasqualotto, G., Zanuttigh, P., Cortelazzo, G.M.: Combining color and shape descriptors for 3D model retrieval. Signal Process-Image 28(6), 608–623 (2013)CrossRefGoogle Scholar
  54. 54.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. 29(1), 167–172 (2007)CrossRefGoogle Scholar
  55. 55.
    Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: IEEE International Conference on Computer Vision (ICCV), pp. 460–467 (2009)Google Scholar
  56. 56.
    Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)CrossRefGoogle Scholar
  57. 57.
    Rabin, J., Peyré, G., Cohen, L.D.: Geodesic shape retrieval via optimal mass transport. In: Proceedings of the 11th European Conference on Computer Vision: Part V (ECCV’10), pp. 771–784. Springer, Berlin (2010)Google Scholar
  58. 58.
    Raviv, D., Bronstein, A., Bronstein, M., Waisman, D., Sochen, N., Kimmel, R.: Equi-affine invariant geometry for shape analysis. J. Math. Imaging Vis. 50(1–2), 144–163 (2014)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant geodesic geometry of deformable 3D shapes. Comput. Graph. 35(3), 692–697 (2011)CrossRefGoogle Scholar
  60. 60.
    Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 222, 847–849 (1946)MathSciNetMATHGoogle Scholar
  61. 61.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as “Shape-DNA” of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)CrossRefGoogle Scholar
  62. 62.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)MATHCrossRefGoogle Scholar
  63. 63.
    Ruiz, C., Cabredo, R., Monteverde, L., Huang, Z.: Combining shape and color for retrieval of 3D models. In: Fifth International Joint Conference on INC, IMS and IDC (NCM’09), pp. 1295–1300 (2009)Google Scholar
  64. 64.
    Rustamov, R.M.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP’07), pp. 225–233. Eurographics Association, Aire-la-Ville (2007)Google Scholar
  65. 65.
    Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 519–528 (2006)Google Scholar
  66. 66.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proceedings of the Shape Modeling International (SMI’04), pp. 167–178. IEEE Computer Society, Washington, DC (2004)Google Scholar
  67. 67.
    Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., Suetens, P.: Isometric deformation modelling for object recognition. In: Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 5702, pp. 757–765. Springer, Berlin (2009)Google Scholar
  68. 68.
    Starck, J., Hilton, A.: Correspondence labelling for wide-timeframe free-form surface matching. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8 (2007)Google Scholar
  69. 69.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)CrossRefGoogle Scholar
  70. 70.
    Suzuki, M.: A Web-based retrieval system for 3D polygonal models. In: Joint 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 4, pp. 2271–2276 (2001)Google Scholar
  71. 71.
    Tanaka, J., Weiskopf, D., Williams, P.: The role of color in high-level vision. Trends Cogn. Sci. 5, 211–215 (2001)CrossRefGoogle Scholar
  72. 72.
    Tangelder, J., Veltkamp, R.: A survey of content-based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)CrossRefGoogle Scholar
  73. 73.
    Tatsuma, A., Aono, M.: Multi-fourier spectra descriptor and augmentation with spectral clustering for 3D shape retrieval. Vis. Comput. 25(8), 785–804 (2008)CrossRefGoogle Scholar
  74. 74.
    Tombari, F., Salti, S., Di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. In: IEEE International Conference on Image Processing (ICIP), pp. 809–812 (2011)Google Scholar
  75. 75.
    TurboSquid. http://www.turbosquid.com/. Accessed 14 July 2014
  76. 76.
    Veltkamp, R., Ruijsenaars, R., Spagnuolo, M., van Zwol, R., ter Haar, F.: Shrec2006: 3D shape retrieval contest . Tech. Rep. CS-2006-030, UU (2006)Google Scholar
  77. 77.
    Wang, C., Bronstein, M.M., Bronstein, A.M., Paragios, N.: Discrete minimum distortion correspondence problems for non-rigid shape matching. In: Proceedings of the Third International Conference on Scale Space and Variational Methods in Computer Vision (SSVM’11), pp. 580–591. Springer, Berlin (2012)Google Scholar
  78. 78.
    Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3360–3367 (2010)Google Scholar
  79. 79.
    Wu, C., Clipp, B., Li, X., Frahm, J.M., Pollefeys, M.: 3D model matching with viewpoint-invariant patches (VIP). In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)Google Scholar
  80. 80.
    Zaharescu, A., Boyer, E., Horaud, R.: Keypoints and local descriptors of scalar functions on 2D manifolds. Int. J. Comput. Vis. 100(1), 78–98 (2012)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Biasotti
    • 1
  • A. Cerri
    • 1
  • M. Aono
    • 6
  • A. Ben Hamza
    • 4
  • V. Garro
    • 2
    • 3
  • A. Giachetti
    • 3
  • D. Giorgi
    • 2
  • A. Godil
    • 5
  • C. Li
    • 5
  • C. Sanada
    • 6
  • M. Spagnuolo
    • 1
  • A. Tatsuma
    • 6
  • S. Velasco-Forero
    • 7
  1. 1.Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”CNRGenovaItaly
  2. 2.Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”CNRPisaItaly
  3. 3.Dipartimento di InformaticaUniversità di VeronaVeronaItaly
  4. 4.Concordia UniversityMontrealCanada
  5. 5.National Institute of Standards and TechnologyGaithersburgUSA
  6. 6.Department of Computer Science and EngineeringToyohashi University of TechnologyToyohashiJapan
  7. 7.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations