The Visual Computer

, Volume 32, Issue 12, pp 1605–1620 | Cite as

3D reconstruction for featureless scenes with curvature hints

  • Andrea Baldacci
  • Daniele Bernabei
  • Massimiliano Corsini
  • Fabio Ganovelli
  • Roberto Scopigno
Original Article

Abstract

We present a novel interactive framework for improving 3D reconstruction starting from incomplete or noisy results obtained through image-based reconstruction algorithms. The core idea is to enable the user to provide localized hints on the curvature of the surface, which are turned into constraints during an energy minimization reconstruction. To make this task simple, we propose two algorithms. The first is a multi-view segmentation algorithm that allows the user to propagate the foreground selection of one or more images both to all the images of the input set and to the 3D points, to accurately select the part of the scene to be reconstructed. The second is a fast GPU-based algorithm for the reconstruction of smooth surfaces from multiple views, which incorporates the hints provided by the user. We show that our framework can turn a poor-quality reconstruction produced with state of the art image-based reconstruction methods into a high- quality one.

Keywords

Image-based reconstruction Image-based modeling, surface reconstruction Depth maps fusion Energy minimization on the GPU 

Supplementary material

Supplementary material 1 (mp4 28128 KB)

References

  1. 1.
    Adarsh Kowdle, S.N.S., Szeliski, R.: Multiple view object cosegmentation using appearance and stereo cues. In: European Conference on Computer Vision (ECCV 2012) (2012)Google Scholar
  2. 2.
    Alexe, B., Deselaers, T., Ferrari, V.: Classcut for unsupervised class segmentation. In: ECCV2010, pp. 8–10 (2010). http://www.springerlink.com/index/D62206186631X328.pdf
  3. 3.
    Bao, S.Y., Chandraker, M., Lin, Y., Savarese, S.: Dense object reconstruction with semantic priors. In: CVPR, pp. 1264–1271 (2013). doi:10.1109/CVPR.2013.167. http://www.cv-foundation.org/openaccess/CVPR2013.py
  4. 4.
    Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988). doi:10.1093/imanum/8.1.141. http://imajna.oxfordjournals.org/content/8/1/141.abstract
  5. 5.
    Bleyer, M., Rother, C., Kohli, P., Scharstein, D., Sinha, S.: Object stereo–joint stereo matching and object segmentation. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’11, pp. 3081–3088. IEEE Computer Society, Washington (2011). doi:10.1109/CVPR.2011.5995581
  6. 6.
    Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: ICCV 2001, pp. 105–112 (2001). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=937505
  7. 7.
    Bradley, D., Boubekeur, T., Heidrich, W.: Accurate multi-view reconstruction using robust binocular stereo and surface meshing. In: CVPR. IEEE Computer Society (2008). doi:10.1109/CVPR.2008.4587792
  8. 8.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Campbell, N., Vogiatzis, G., Hernandez, C., Cipolla, R.: Automatic object segmentation from calibrated images. In: Visual Media Production Conference, pp. 126–137 (2011). doi:10.1109/CVMP.2011.21
  10. 10.
    Campbell, N.D., Vogiatzis, G., Hernández, C., Cipolla, R.: Using multiple hypotheses to improve depth-maps for multi-view stereo. In: Proceedings of the 10th European Conference on Computer Vision: Part I, ECCV ’08, pp. 766–779. Springer, Berlin (2008). doi:10.1007/978-3-540-88682-2_58
  11. 11.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pp. 303–312. ACM, New York (1996). doi:10.1145/237170.237269
  12. 12.
    Djelouah, A., Franco, J.S., Boyer, E., Clerc, F.L., Prez, P.: N-tuple color segmentation for multi-view silhouette extraction. In: ECCV (5) ’12, pp. 818–831 (2012)Google Scholar
  13. 13.
    Djelouah, A., Franco, J.S., Boyer, E., Le Clerc, F., Perez, P.: Multi-view object segmentation in space and time. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2640–2647 (2013). doi:10.1109/ICCV.2013.328
  14. 14.
    Freedman, D.: Interactive graph cut based segmentation with shape priors. In: CVPR’05, vol. 1, pp. 755–762 (2005). doi:10.1109/CVPR.2005.191
  15. 15.
    Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Manhattan-world stereo. In: CVPR 2009, 1422–1429 (2009). doi:10.1109/CVPR.2009.5206867. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5206867
  16. 16.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  17. 17.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010). doi:10.1109/TPAMI.2009.161 CrossRefGoogle Scholar
  18. 18.
    Gallup, D., Frahm, J., Pollefeys, M.: Piecewise planar and non-planar stereo for urban scene reconstruction. In: CVPR’10, pp. 1418–1425 (2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5539804
  19. 19.
    Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo revisited. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, CVPR ’06, pp. 2402–2409. IEEE Computer Society, Washington (2006). doi:10.1109/CVPR.2006.199
  20. 20.
    Gopi, M., Krishnan, S., Silva, C.: Surface reconstruction based on lower dimensional localized delaunay triangulation. Comput. Graph. Forum 19(3), 467–478 (2000). doi:10.1111/1467-8659.00439 CrossRefGoogle Scholar
  21. 21.
    Hoff III, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized voronoi diagrams using graphics hardware. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 277–286. ACM Press/Addison-Wesley, New York (1999). doi:10.1145/311535.311567
  22. 22.
    Jancosek, M., Pajdla, T.: Segmentation based multi-view stereo. In: Computer Vision Winter Workshop (2009)Google Scholar
  23. 23.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. IJCV 1(4), 321–331 (1988)CrossRefMATHGoogle Scholar
  24. 24.
    Kazhdan, M.M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Symposium on Geometry Processing, pp. 61–70 (2006)Google Scholar
  25. 25.
    Kolev, K., Brox, T., Cremers, D.: Robust variational segmentation of 3D objects from multiple views. Pattern Recognit. 688–697 (2006). http://www.springerlink.com/index/m68268261t8h0641.pdf
  26. 26.
    Kolev, K., Klodt, M., Brox, T., Cremers, D.: Propagated photoconsistency and convexity in variational multiview 3D reconstruction. In: Workshop on Photometric Analysis for Computer Vision, Rio de Janeiro (2007)Google Scholar
  27. 27.
    Kolev, K., Pock, T., Cremers, D.: Anisotropic minimal surfaces integrating photoconsistency and normal information for multiview stereo. In: ECCV’10, Heraklion (2010)Google Scholar
  28. 28.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–59 (2004). doi:10.1109/TPAMI.2004.1262177. http://www.ncbi.nlm.nih.gov/pubmed/15376891
  29. 29.
    Mortensen, E., Barrett, W.: Intelligent scissors for image composition. In: Proceedings of the 22nd Annual Conference, vol. 84602(801) (1995). http://dl.acm.org/citation.cfm?id=218442
  30. 30.
    Nan, L., Sharf, A., Chen, B.: 2D–3D lifting for shape reconstruction. Comput. Graph. Forum 33(7), 249–258 (2014). doi:10.1111/cgf.12493 CrossRefGoogle Scholar
  31. 31.
    Nguyen, H., Wnsche, B., Delmas, P., Lutteroth, C., Zhang, E.: A robust hybrid image-based modeling system. Vis. Comput. 1–16 (2015). doi:10.1007/s00371-015-1078-y
  32. 32.
    Öztireli, A.C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. Comput. Graph. Forum 28(2), 493–501 (2009)CrossRefGoogle Scholar
  33. 33.
    Rother, C., Kolmogorov, V.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (2004). http://dl.acm.org/citation.cfm?id=1015720
  34. 34.
    Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 519–528 (2006). doi:10.1109/CVPR.2006.19
  35. 35.
    Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In: Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 1067–1073 (1997)Google Scholar
  36. 36.
    Sinha, S., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based rendering. In: ICCV, pp. 1881–1888 (2009). doi:10.1109/ICCV.2009.5459417
  37. 37.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25(3), 835–846 (2006). doi:10.1145/1141911.1141964 CrossRefGoogle Scholar
  38. 38.
    Sormann, M., Zach, C., Karner, K.: Graph cut based multiple view segmentation for 3D reconstruction. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 1085–1092 (2006). doi:10.1109/3DPVT.2006.70
  39. 39.
    Sormann, M., Zach, C., Karner, K.: Graph cut based multiple view segmentation for 3D reconstruction. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT ’06), pp. 1085–1092 (2006). doi:10.1109/3DPVT.2006.70. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4155842
  40. 40.
    Vicente, S.: Graph cut based image segmentation with connectivity priors. In: CVPR ’08, pp. 1–8 (2008). doi:10.1109/CVPR.2008.4587440
  41. 41.
    Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)CrossRefMATHGoogle Scholar
  42. 42.
    Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Schematic surface reconstruction. In: CVPR, 2012, 1498–1505 (2012). doi:10.1109/CVPR.2012.6247839
  43. 43.
    Yezzi, A., Soatto, S.: Stereoscopic segmentation. IJCV 53(1), 31–43 (2003). http://www.springerlink.com/index/V812463066072825.pdf
  44. 44.
    Zhu, C., Leow, W.: Textured mesh surface reconstruction of large buildings with multi-view stereo. Vis. Comput. 29(6–8), 609–615 (2013). doi:10.1007/s00371-013-0827-z CrossRefGoogle Scholar
  45. 45.
    Chaurasia, G., Duchêne, S., Sorkine-Hornung, O., Drettakis, G.: Depth Synthesis and Local Warps for Plausible Image-based Navigation. ACM Trans. Graph. 32 (2013). http://www-sop.inria.fr/reves/Basilic/2013/CDSD13

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrea Baldacci
    • 1
  • Daniele Bernabei
    • 1
  • Massimiliano Corsini
    • 1
  • Fabio Ganovelli
    • 1
  • Roberto Scopigno
    • 1
  1. 1.ISTI-CNRPisaItaly

Personalised recommendations