Advertisement

Texture advection on discontinuous flows

  • 235 Accesses

  • 1 Citations

Abstract

Texture advection techniques, which transport textures using a velocity field, are used to visualize the dynamics of a flow on a triangle mesh. Some flow phenomena lead to velocity fields with discontinuities that cause the deformation of the texture which is not properly controlled by these techniques. We propose a method to detect and visualize discontinuities on a flow, keeping consistent texture advection at both sides of the discontinuity. The method handles the possibility that the discontinuity travels across the domain of the flow with arbitrary velocity, estimating its speed with least-squares approximation. The technique is tested with different sample scenarios and with two avalanche scenes, showing that it can run at interactive rates.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Bargteil, A.W., Goktekin, T.G., O’Brien, J.F., Strain, J.A.: A semi-lagrangian contouring method for fluid simulation. ACM. Trans. Graph. 25(1), 19–38 (2006)

  2. 2.

    Bargteil, A.W., Sin, F., Michaels, J.E., Goktekin, T.G., O’Brien, J.F.: A texture synthesis method for liquid animations. In: SCA ’06 Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 345–351 (2006)

  3. 3.

    Bouchaud, J.P., Cates, M.E., Ravi-Prakash, J., Edwards, S.F.: A model for the dynamics of sandpile surfaces. J. Phys. Fr. 4, 1383–1410 (1994)

  4. 4.

    Correa, C.D., Hero, R., Ma, K.L.: A comparison of gradient estimation methods for volume rendering on unstructured meshes. IEEE. Trans. Vis. Comput. Graph. 17(3), 305–319 (2011)

  5. 5.

    Daerr, A.: Dynamical equilibrium of avalanches on a rough plane. Phys. Fluids. 13, 2115–2124 (2001)

  6. 6.

    Daerr, A., Douady, S.: Two types of avalanche behaviour in granular media. Nature 399, 241–243 (1999)

  7. 7.

    El Hajjar, J.F., Jolivet, V., Ghazanfarpour, D., Pueyo, X.: A model for real-time on-surface flows. Vis. Comput. 25(2), 87–100 (2009)

  8. 8.

    Hadeler, K.P., Kuttler, C.: Dynamical models for granular matter. Granul. Matter. 2(1), 9–18 (1999)

  9. 9.

    Ihmsen, M., Akinci, N., Akinci, G., Teschner, M.: Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28(6–8), 669–677 (2012)

  10. 10.

    Jobard, B., Erlebacher, G., Hussaini, M.Y.: Lagrangian-eulerian advection for unsteady flow visualization. In: Proceedings of the Conference on Visualization ’01, VIS ’01, pp. 53–60. IEEE Computer Society (2001)

  11. 11.

    Kim, S., Guy, S., Hillesland, K., Zafar, B., Gutub, A.A., Manocha, D.: Velocity-based modeling of physical interactions in dense crowds. Vis. Comput. 1–15 (2014)

  12. 12.

    Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N., Carlson, M., Lin, M.C.: Texturing fluids. IEEE. Trans. Vis. Comput. Gr. 13(5), 939–952 (2007)

  13. 13.

    Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The state of the art in flow visualization: dense and texture-based techniques. Comput. Gr. Forum. 23(2), 203–221 (2004)

  14. 14.

    Laramee, R.S., Jobard, B., Hauser, H.: Image space based visualization of unsteady flow on surfaces. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 18. IEEE Computer Society (2003)

  15. 15.

    Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. In: Proceedings of the ACM SIGGRAPH 2006 Papers, pp. 541–548 (2006)

  16. 16.

    Lever, J., Komura, T.: Real-time controllable fire using textured forces. Vis. Comput. 28(6–8), 691–700 (2012)

  17. 17.

    Max, N., Becker, B.: Flow visualization using moving textures (1996)

  18. 18.

    Neyret, F.: Advected textures. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 147–153 (2003)

  19. 19.

    Onoue, K., Nishita, T.: An interactive deformation system for granular material. Comput. Gr. Forum. 24(1), 51–60 (2005)

  20. 20.

    Pla-Castells, M., García-Fernandez, I., Martinez-Dura, R.J.: Physically-based interactive sand simulation. In: Eurographics 2008—Short Papers, pp. 21–24 (2008)

  21. 21.

    Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 193–202 (2004)

  22. 22.

    Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM:Society for Industrial and Applied Mathematics (2004)

  23. 23.

    Sumner, R.W., O’Brien, J.F., Hodgins, J.K.: Animating sand, mud and snow. Comput. Gr. Forum. 18(1), 17–26 (1999)

  24. 24.

    Tsuda, Y., Yue, Y., Dobashi, Y., Nishita, T.: Visual simulation of mixed-motion avalanches with interactions between snow layers. Vis. Comput. 26(6–8), 883–891 (2010)

  25. 25.

    Weiskopf, D., Ertl, T.: A hybrid physical/device-space approach for spatio-temporally coherent interactive texture advection on curved surfaces. In: Proceedings of Graphics Interface 2004, GI ’04, pp. 263–270 (2004)

  26. 26.

    van Wijk, J.J.: Image based flow visualization. ACM. Trans. Graph. 21, 745–754 (2002)

  27. 27.

    Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Scalable real-time animation of rivers. Comput. Gr. Forum. 28(2), 239–248 (2009)

  28. 28.

    Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Lagrangian texture advection: preserving both spectrum and velocity field. IEEE. Trans. Vis. Comput. Gr. 17(11), 1612–1623 (2011)

Download references

Acknowledgments

This research has been partially supported by Grant GV/2012/007, from Generalitat Valenciana, Valencia, Spain.

Author information

Correspondence to Ignacio García-Fernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 56643 KB)

Supplementary material 1 (avi 56643 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Cerro, A., García-Fernández, I., Martínez-Durá, R.J. et al. Texture advection on discontinuous flows. Vis Comput 31, 1033–1043 (2015). https://doi.org/10.1007/s00371-015-1118-7

Download citation

Keywords

  • Flow visualization
  • Texture advection
  • Discontinuity
  • Computer animation