The Visual Computer

, Volume 31, Issue 6–8, pp 775–785 | Cite as

A fast approach for perceptually-based fitting strokes into elliptical arcs

  • Pedro Company
  • Raquel Plumed
  • Peter A. C. Varley
Original Article

Abstract

Fitting elliptical arcs to strokes of an input sketch is discussed. We describe an approach which automatically combines existing algorithms to get a balance of speed and precision. For measuring precision, we introduce fast metrics which are based on perceptual criteria and are tolerant of sketching imperfections. We return a likelihood estimate based on these metrics rather than deterministic yes/no result, in order that the approach can be used in higher-level collaborative-decision recognition flows.

Keywords

Computer-aided sketching Sketch strokes Fitting primitives to strokes Elliptical arcs Perceptual fit Fast fit 

Notes

Acknowledgments

This work was partially funded by financial support from the Ramon y Cajal Scholarship Programme and by the “Pla de Promoció de la Investigació de la Universitat Jaume I”, Project P1 1B2010-01. We wish to thank Salvador Mondragón, who collected many questionnaires from his students, and Margarita Vergara, for her contribution to statistical data treatment.

References

  1. 1.
    Wang, S., Qin, S., Gao, M.: New grouping and fitting methods for interactive overtraced sketches. Vis. Comput. 30, 285–297 (2014)CrossRefGoogle Scholar
  2. 2.
    Pusch, R., Samavati, F., Nasri, A., Wyvill, B.: Improving the sketch-based interface. Vis. Comput. 23, 955–962 (2007)CrossRefGoogle Scholar
  3. 3.
    Xiong, Y., LaViola, J.: A shortstraw-based algorithm for corner finding in sketch-based interfaces. Comput. Graph. 34(5), 513–527 (2010)CrossRefGoogle Scholar
  4. 4.
    Saund, E., Moran, T.P.: A perceptually-supported sketch editor. In: Proceedings on UIST, pp. 175–184 (1994)Google Scholar
  5. 5.
    Chernov, N., Huang, Q., Ma, H.: Fitting quadratic curves to data points. Br. J. Math. Comput. Sci. 4, 33–60 (2014)CrossRefGoogle Scholar
  6. 6.
    Yu, J., Kulkarni, S.R., Poor, H.V.: Robust ellipse and spheroid fitting. Pattern Recognit. Lett. 33, 492–499 (2013)CrossRefGoogle Scholar
  7. 7.
    Rosin, P.L.: Ellipse fitting by accumulating five-point fits. Pattern Recognit. Lett. 14, 661–669 (1993)CrossRefGoogle Scholar
  8. 8.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21, 476–480 (1999)CrossRefGoogle Scholar
  9. 9.
    Halir, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualization (WSCG’98), pp. 125–132 (1998)Google Scholar
  10. 10.
    Kotagiri, S.: C# implementation for fitting an ellipse for a set of points. Srikanth Kotagiri’s Blog. http://skotagiri.wordpress.com/2010/06/19/c-implementation-for-fitting-an-ellipse-for-a-set-of-points/ (2010). Accessed Nov 2013
  11. 11.
    Shpitalni, M., Lipson, H.: Classification of sketch strokes and corner detection using conic sections and adaptive clustering. J. Mech. Des. Trans. ASME 119, 131–135 (1997)CrossRefGoogle Scholar
  12. 12.
    GSL-GNU Scientific Library. http://www.gnu.org/software/gsl/. Accessed Nov 2013
  13. 13.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge Press, Cambridge (2007)MATHGoogle Scholar
  14. 14.
    LAPACK-Linear Algebra PACKage. http://www.netlib.org/lapack/. Accessed Nov 2013
  15. 15.
    Szpak, Z., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with the Sampson distance. In: Proceedings of 12th European Conference on Computer Vision (ECCV). LNCS, vol. 7576, pp. 87–100 (2012)Google Scholar
  16. 16.
    Szpak, Z.L.: Research themes: ellipse fitting. https://sites.google.com/site/szpakz/research/ellipse-fitting. Accessed May 2014
  17. 17.
    Davis, T.: Code to find the equation of a conic. http://mathforum.org/library/drmath/view/51735.html (1996). Accessed Nov 2013
  18. 18.
    Elsen, C., Demaret, J.-N., Yang, M.C., Leclercq, P.: Document sketch-based interfaces for modeling and users’ needs: redefining connections. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 26, 281–301 (2012)CrossRefGoogle Scholar
  19. 19.
    Company, P., Plumed, R., Varley, P.: Study on perceptually-based fitting elliptic arcs. Technical Report Ref. 09/2015, Regeo. Geometric Reconstruction Group. http://www.regeo.uji.es (2015). Accessed Mar 2015
  20. 20.
    Company, P., Plumed, R., Varley, P.: Source code for fitting ellipses. http://www.regeo.uji.es/FitEllipse.htm, Regeo. Geometric Reconstruction Group. http://www.regeo.uji.es (2015). Accessed Feb 2015
  21. 21.
    Eberly, D.: Distance from a point to an ellipse, an ellipsoid, or a hyperellipsoid, 2004. Internet publication: “Distance from a Point to an Ellipse in 2D”. Geometric Tools, LLC. www.geometrictools.com. Accessed Nov 2013. Book publication: “3D Game Engine Design”, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2007). (see Section 14.13.1)
  22. 22.
    Boyer, K.L.: Perceptual organization in computer vision: status, challenges, and potential. Comput. Vis. Image Underst. 76, 1–5 (1999)CrossRefGoogle Scholar
  23. 23.
    Hoffmann, D.: Visual Intelligence. How We Create What We See. WW Norton & Company, New York (1998)Google Scholar
  24. 24.
    Kumar, P., Cai, J., Miklavcic, S.: Improved ellipse fitting by considering the eccentricity of data point sets. In: Proceedings of ICIP, pp. 815–819 (2013)Google Scholar
  25. 25.
    Vaseghi, S.V.: Advanced Digital Signal Processing and Noise Reduction, 4th edn. Wiley, New York (2008)Google Scholar
  26. 26.
    Durbin, J.: Efficient estimation of parameters in moving average models. Biometrica 46, 306–316 (1959)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Wolin, A., Eoff, B., Hammond, T.: Shortstraw: a simple and effective corner finder for polylines. SBIM 2008, 33–40 (2008)Google Scholar
  28. 28.
    Masood, A., Sarfraz, M.: Corner detection by sliding rectangles along planar curves. Comput. Graph. 31, 440–448 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of New Imaging TechnologyUniversitat Jaume ICastellónSpain
  2. 2.Department of Mechanical Engineering and ConstructionUniversitat Jaume ICastellónSpain

Personalised recommendations