The Visual Computer

, Volume 31, Issue 6–8, pp 1079–1088 | Cite as

DynaMoVis: visualization of dynamic models for urban modeling

Original Article

Abstract

In association with Urban modelers, we have created DynaMoVis, a system for the visualization of dynamic models. The prediction of the evolution of urban and ecological systems is difficult because they are complex nonlinear systems that exhibit self-organization, emergence, and path dependence. Without a good understanding of the dynamics, interventions might have unintended side-effects. This study aims to make progress in the understanding of dynamic models in the application areas of urban modeling. Analyzing these simulations is challenging due to the large amount of data generated and the high-dimensional nature of the system. We present a visualization system for exploring the behavior of a simulation from many different points of view. The system contains a number of different modes which allow exploration of the simulation parameter space, the introduction and effect of noise on the simulation and the basins of attraction in the phase space of the simulation. Through the use of this system, it has been possible to develop a deeper understanding of the inter-dependencies in the models, their parameter spaces, and corresponding phase spaces.

Keywords

Dynamic models Urban modeling  Visualization 

Supplementary material

371_2015_1096_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (pdf 1231 KB)
371_2015_1096_MOESM2_ESM.pdf (214 kb)
Supplementary material 2 (pdf 214 KB)

Supplementary material 3 (wmv 19270 KB)

References

  1. 1.
    Berger, W., Piringer, H., Filzmoser, P., Gröller, E.: Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. In: Proceedings of the 13th Eurographics/IEEE-VGTC Conference on Visualization, EuroVis’11, pp. 911–920 (2011)Google Scholar
  2. 2.
    Bergner, S., Sedlmair, M., Möller, T., Abdolyousefi, S., Saad, A.: Paraglide: interactive parameter space partitioning for computer simulations. IEEE Trans. Vis. Comput. Graph. 19(9), 1499–1512 (2013)CrossRefGoogle Scholar
  3. 3.
    Bischi, G.I., Mroz, L., Hauser, H.: Studying basin bifurcations in nonlinear triopoly games by using 3D visualization. Nonlinear Anal. Theory Methods Appl. 47(8), 5325–5341 (2001)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Booshehrian, M., Möller, T., Peterman, R.M., Munzner, T.: Vismon: facilitating analysis of trade-offs, uncertainty, and sensitivity in fisheries management decision making. Comput. Graph. Forum 31(3), 1235–1244 (2012)CrossRefGoogle Scholar
  5. 5.
    Boyandin, I., Bertini, E., Bak, P., Lalanne, D.: Flowstrates: an approach for visual exploration of temporal origin-destination data. Comput. Graph. Forum 30(3), 971–980 (2011)CrossRefGoogle Scholar
  6. 6.
    Chang, R., Wessel, G., Kosara, R., Sauda, E., Ribarsky, W.: Legible cities: focus-dependent multi-resolution visualization of urban relationships. IEEE Trans. Vis. Comput. Graph. 13, 1169–1175 (2007)CrossRefGoogle Scholar
  7. 7.
    Dearden, J., Wilson, A.: Explorations in urban and regional dynamics: a case study in complexity science. Routledge (2015)Google Scholar
  8. 8.
    Dykes, J., Brunsdon, C.: Geographically weighted visualization: interactive graphics for scale-varying exploratory analysis. IEEE Trans. Vis. Comput. Graph. 13(6), 1161–1168 (2007)CrossRefGoogle Scholar
  9. 9.
    Graham, M., Kennedy, J.: Using curves to enhance parallel coordinate visualisations. In: Proceedings Seventh International Conference on Information Visualization, 2003, IV 2003, pp. 10–16 (2003)Google Scholar
  10. 10.
    Gröller, E., Löffelmann, H., Wegenkittl, R.: Visualization of dynamical systems. Future Gener. Comput. Syst. 15(1), 75–86 (1999)CrossRefGoogle Scholar
  11. 11.
    Guo, D.: Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans. Vis. Comput. Graph. 15(6), 1041–1048 (2009)CrossRefGoogle Scholar
  12. 12.
    Heinrich, J., Luo, Y., Kirkpatrick, A.E., Weiskopf, D.: Evaluation of a bundling technique for parallel coordinates. In: GRAPP & IVAPP, pp. 594–602 (2012)Google Scholar
  13. 13.
    Heinrich, J., Weiskopf, D.: Continuous parallel coordinates. IEEE Trans. Vis. Comput. Graph. 15(6), 1531–1538 (2009)CrossRefGoogle Scholar
  14. 14.
    Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985)MATHCrossRefGoogle Scholar
  15. 15.
    Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014)CrossRefGoogle Scholar
  16. 16.
    Matkovic, K., Gracanin, D., Jelovic, M., Ammer, A., Lež, A., Hauser, H.: Interactive visual analysis of multiple simulation runs using the simulation model view: understanding and tuning of an electronic unit injector. IEEE Trans. Vis. Comput. Graph. 16(6), 1449–1457 (2010)CrossRefGoogle Scholar
  17. 17.
    Orrell, D., Smith, L.A.: Visualizing bifurcations in high dimensional systems: the spectral bifurcation diagram. Int. J. Bifurc. Chaos 13(10), 3015–3027 (2003)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Pinnel, L.D., Dockrey, M., Brush, A.B., Borning, A.: Design of visualizations for urban modeling. In: Joint Eurographics—IEEE TCVG Symposium on Visualization, VisSym 00, pp. 199–208 (2000)Google Scholar
  19. 19.
    Pitzer, E., Affenzeller, M., Beham, A.: A closer look down the basins of attraction. In: 2010 UK Workshop on Computational Intelligence, UKCI 2010, pp. 1–6 (2010)Google Scholar
  20. 20.
    Pueyo, O., Patow, G.: Structuring urban data. Vis. Comput. 30(2), 159–172 (2014)CrossRefGoogle Scholar
  21. 21.
    Theisel, H.: Higher order parallel coordinates. In: VMV, pp. 415–420 (2000)Google Scholar
  22. 22.
    Torsney-Weir, T., Saad, A., Moller, T., Hege, H.C., Weber, B., Verbavatz, J.M.: Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans. Vis. Comput. Graph. 17(12), 1892–1901 (2011)CrossRefGoogle Scholar
  23. 23.
    Turkay, C., Slingsby, A., Hauser, H., Wood, J., Dykes, J.: Attribute signatures: dynamic visual summaries for analyzing multivariate geographical data. IEEE Trans. Vis. Comput. Graph. 20(12), 2033–2042 (2014)CrossRefGoogle Scholar
  24. 24.
    Unger, A., Schulte, S., Klemann, V., Dransch, D.: A visual analysis concept for the validation of geoscientific simulation models. IEEE Trans. Vis. Comput. Graph. 18(12), 2216–2225 (2012)CrossRefGoogle Scholar
  25. 25.
    Vanegas, C.A., Aliaga, D.G., Beneš, B., Waddell, P.: Visualization of simulated urban spaces: inferring parameterized generation of streets, parcels, and aerial imagery. IEEE Trans. Vis. Comput. Graph. 15(3), 424–435 (2009)CrossRefGoogle Scholar
  26. 26.
    Vanegas, C.A., Aliaga, D.G., Beneš, B., Waddell, P.A.: Interactive design of urban spaces using geometrical and behavioral modeling. ACM Trans. Graph. 28(5), 111:1–111:10 (2009)CrossRefGoogle Scholar
  27. 27.
    Vanegas, C.A., Aliaga, D.G., Wonka, P., Mller, P., Waddell, P., Watson, B.: Modelling the appearance and behaviour of urban spaces. Comput. Graph. Forum 29(1), 25–42 (2010)Google Scholar
  28. 28.
    Waddell, P.: Urbansim: modeling urban development for land use, transportation and environmental planning. J. Am. Plan. Assoc. 68, 297–314 (2002)CrossRefGoogle Scholar
  29. 29.
    van Wijk, J., van Liere, R.: Hyperslice. In: Proceedings of the IEEE Conference on Visualization 1993, Visualization ’93, pp. 119–125 (1993)Google Scholar
  30. 30.
    Zhou, H., Yuan, X., Qu, H., Cui, W., Chen, B.: Visual clustering in parallel coordinates. Comput. Graph. Forum 27(3), 1047–1054 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Visual Computing GroupSwansea UniversityWalesUK
  2. 2.Centre for Advanced Spatial AnalysisUCLLondonUK

Personalised recommendations