Advertisement

The Visual Computer

, Volume 32, Issue 4, pp 445–463 | Cite as

Image-based styling

  • Dieter HildebrandtEmail author
Original Article
  • 390 Downloads

Abstract

The same data can be visualized using various visual styles that each is suitable for specific requirements, e.g., 3D geodata visualized using photorealistic, cartographic, or illustrative styles. In contrast to feature-based styling, image-based styling performed in image space at image resolution allows decoupling styling from image generation and output-sensitive, expressive styling. However, leveraging image-based styling is still impeded. No previous approach allows specifying image-based styling expressively with an extensive inventory of composable operators, while providing styling functionality in a service-oriented, interoperable manner. In this article, we present an interactive system for specifying and providing the functionality of image-based styling. As key characteristics, it separates concerns of styling from image generation and facilitates specifying styling as algebraic compositions of high-level operators using a unified 3D model representation. We propose a generalized visualization model, an image-based styling algebra, two declarative DSLs, an operator taxonomy, an operational model, and a standards-based service interface. The approach facilitates expressive specifications of image-based styling for design, description, and analysis and leveraging the functionality of image-based styling in a service-oriented, interoperable, reusable, and composable manner.

Keywords

Styling Image-based representation  Visualization model Domain-specific language  Taxonomy Optimization  Interoperability  Service-oriented computing 

Abbreviations

API

Application programming interface

BRDF

Bidirectional reflectance distribution function

CRS

Coordinate reference system

CTL1D 1D

Color transfer lookup table

CTL3D 3D

Color transfer lookup table

CTLnD nD

Color transfer lookup table

DFG

Data flow graph

DSL

Domain-specific language

FID

Feature identification

FNC

Focus and context

FStyling

Feature-based styling

G-buffer

Geometric buffer

GLSL

OpenGL Shading Language

IRep

Image-based representation

ISA

Image-based styling algebra

ISE

Image-based Symbology Encoding

ISL

Image-based Styling Language

ISLD

Image-based Styled Layer Descriptor

ISO

International Organization for Standardization

IStyling

Image-based styling

IView

Image-based view

LOA

Level of abstraction

LSG

Logical styling graph

LUT

Lookup table

NPR

Non-photorealistic

OGC

Open Geospatial Consortium

OID

Object identification

PR

Photorealistic

PSG

Physical styling graph

SE

Symbology Encoding

SE3D

Symbology Encoding 3D

SLD

Styled Layer Descriptor

SLD3D

Styled Layer Descriptor 3D

SOA

Service-oriented architecture

SSI

Service-oriented architectures, standards, and image-based representations

W3C

World Wide Web Consortium

WFS

Web Feature Service

WISS

Web Image-based Styling Service

References

  1. 1.
    Adobe Systems Inc.: Adobe Pixel Bender Developer’s Guide (2010)Google Scholar
  2. 2.
    Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, third edn. (2008)Google Scholar
  3. 3.
    Hildebrandt, D.: A software reference architecture for service-oriented 3D geovisualization systems. ISPRS Int. J. Geo-Inf. 3(4), 1445–1490 (2014). doi: 10.3390/ijgi3041445
  4. 4.
    Hildebrandt D., Timm R.: An assisting, constrained 3D navigation technique for multiscale virtual 3D city models. GeoInformatica 18(3), 537–567 (2014). doi: 10.1007/s10707-013-0189-8
  5. 5.
    Apple Inc.: Apple Quartz Composer User Guide (2007)Google Scholar
  6. 6.
    Baumann, P.: The OGC web coverage processing service (WCPS) standard. GeoInformatica 14(4), 447–479 (2010)Google Scholar
  7. 7.
    Bertin, J.: Semiology of Graphics: Diagrams. Networks, Maps (1983)Google Scholar
  8. 8.
    Bousseau, A.: Expressive Image Manipulations for a Variety of Visual Representations. Ph.D. thesis, Joseph Fourier Univ (2009)Google Scholar
  9. 9.
    Brinkmann, R.: The Art and Science of Digital Compositing, 2nd edn. (2008)Google Scholar
  10. 10.
    Brodlie, K., Noor, N.M.: Visualization Notations, Models and Taxonomies. In: Theory and Practice of Computer Graphics (2007)Google Scholar
  11. 11.
    Bruckner, S., Gröller, M.E.: Style Transfer Functions for Illustrative Volume Rendering. Comput. Graph. Forum 26(3), 715–724 (2007)Google Scholar
  12. 12.
    Buchin, K., Sousa, M.C., Döllner, J., Samavati, F., Walther, M.: Illustrating Terrains using Direction of Slope and Lighting. In: Proceedings of ICA Mountain Cartography Workshop (2004)Google Scholar
  13. 13.
    Casner, S.M.: A Task-Analytic Approach to the Automated Design of Graphic Presentations. ACM Trans. Graph. 10(2), 111–151 (1991)Google Scholar
  14. 14.
    Cerezo, E., Pérez, F., Pueyo, X., Serón, F.J., Sillion, F.X.: A Survey on Participating Media Rendering Techniques. Vis. Comput. 21(5), 303–328 (2005)Google Scholar
  15. 15.
    Chang, S.F.: Compositing and Manipulation of Video Signals for Multimedia Network Video Services. Ph.D. thesis, Univ. of California at Berkeley (1993)Google Scholar
  16. 16.
    Chuah, M.C., Roth, S.F.: On the Semantics of Interactive Visualizations. In: Proceedings INFOVIS (1996)Google Scholar
  17. 17.
    Cole, F., DeCarlo, D., Finkelstein, A., Kin, K., Morley, K., Santella, A.: Directing Gaze in 3D Models with Stylized Focus. In: Symposium on Rendering, pp. 377–387. The Eurographics Association, Aire-la-Ville, Switzerland (2006)Google Scholar
  18. 18.
    Dahlström, E., Dengler, P., Grasso, A., Lilley, C., McCormack, C., Schepers, D., Watt, J. (eds.): Scalable Vector Graphics (SVG) 1.1 (Second Edition) (2011)Google Scholar
  19. 19.
    Döllner, J., Walther, M.: Real-Time Expressive Rendering of City Models. In: Proceedings INFOVIS (2003)Google Scholar
  20. 20.
    Duff, T.: Compositing 3-D Rendered Images. In: Proceedings SIGGRAPH, vol. 19 (1985)Google Scholar
  21. 21.
    Eissele, M., Weiskopf, D., Ertl, T.: The G\(^{\text{2 }}\)-Buffer Framework. In: Proceedings SimVis (2004)Google Scholar
  22. 22.
    ESRI Inc.: ArcGIS 10.2 Manual (2014)Google Scholar
  23. 23.
    Foley, T., Hanrahan, P.: Spark: Modular, Composable Shaders for Graphics Hardware. ACM Trans. Graph. 30(4), 107:1–107:12 (2011)Google Scholar
  24. 24.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems—The Complete Book, second edn. (2009)Google Scholar
  25. 25.
    Gilson, O., Silva, N., Grant, P.W., Chen, M.: From Web Data to Visualization via Ontology Mapping. Comput. Graph. Forum 27(3), 959–966 (2008)Google Scholar
  26. 26.
    Glander, T.: Multi-Scale Representations of Virtual 3D City Models. Ph.D. thesis, Univ. Potsdam (2013)Google Scholar
  27. 27.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, third edn. (2008)Google Scholar
  28. 28.
    Gotz, D., Wen, Z.: Behavior-driven visualization recommendation. In: Proceedings IUI (2009)Google Scholar
  29. 29.
    Haber, R., McNabb, D.A.: Visualization idioms: a conceptual model for scientific visualization systems. In: Visualization in Scientific Computing (1990)Google Scholar
  30. 30.
    Häberling, C.: Topografische 3D-Karten—Thesen für kartografische Gestaltungsgrundsätze. Ph.D. thesis, ETH Zürich (2003)Google Scholar
  31. 31.
    Heer, J., Bostock, M.: Declarative Language Design for Interactive Visualization. IEEE Trans. Vis. Comput. Graph. 16(6), 1149–1156 (2010)Google Scholar
  32. 32.
    Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream processing optimizations. ACM Comput. Surv. 46(4), 1–34 (2014)CrossRefGoogle Scholar
  33. 33.
    Imhof, E.: Cartographic relief presentation (1982)Google Scholar
  34. 34.
    Iosifescu Enescu, I.: Cartographic Web Services. Ph.D. thesis, ETH Zürich (2011)Google Scholar
  35. 35.
    ISO (ed.): ISO/IEC 19775–1, Extensible 3D (X3D) (2008)Google Scholar
  36. 36.
    Jensen, H.W., Durand, F., Dorsey, J., Stark, M.M., Shirley, P., Premože, S.: A Physically-Based Night Sky Model. In: Proceedings SIGGRAPH (2001)Google Scholar
  37. 37.
    Jimenez, J., Echevarria, J.I., Sousa, T., Gutierrez, D.: SMAA: Enhanced Morphological Antialiasing. Comput. Graph. Forum 31(2), 355–364 (2012)Google Scholar
  38. 38.
    Khronos Group: The OpenCL Specification v2 (2014)Google Scholar
  39. 39.
    Kosara, R., Miksch, S., Hauser, H.: Semantic Depth of Field. In: Proceedings INFOVIS (2001)Google Scholar
  40. 40.
    Kyprianidis, J.E., Collomosse, J., Wang, T., Isenberg, T.: State of the ’Art’: A Taxonomy of Artistic Stylization Techniques for Images and Video. IEEE Trans. Vis. Comput Graph. 19(5), 866–885 (2013). doi: 10.1109/TVCG.2012.160
  41. 41.
    Maass, S.: Techniken zur automatisierten Annotation interaktiver geovirtueller 3D-Umgebungen. Ph.D. thesis, Univ. Potsdam (2009)Google Scholar
  42. 42.
    The MathWorks Inc: Natick, MA. MATLAB Release, US (2013b)Google Scholar
  43. 43.
    McCool, M.D., Toit, S.D., Popa, T., Chan, B., Moule, K.: Shader Algebra. ACM Trans. Graph. 23(3), 787–795 (2004)Google Scholar
  44. 44.
    McDonnel, B., Elmqvist, N.: Towards Utilizing GPUs in Information Visualization: A Model and Implementation of Image-Space Operations. IEEE Trans. Vis. Comput. Graph. 15(6), 1105–1112 (2009)Google Scholar
  45. 45.
    McGuire, M., Stathis, G., Pfister, H., Krishnamurthi, S.: Abstract Shade Trees. In: Proceedings I3D (2006)Google Scholar
  46. 46.
    Méndez-Feliu, À., Sbert, M.: From obscurances to ambient occlusion: a survey. Vis. Comput. 25(2), 181–196 (2009)CrossRefGoogle Scholar
  47. 47.
    Neubauer, S., Zipf, A.: Suggestions for Extending the OGC Styled Layer Descriptor (SLD) Specification into the third Dimension. In: Urban Data Management Symposium (2007)Google Scholar
  48. 48.
    OGC: Symbology Encoding Implementation Specification, Version 1.1.0 (2006)Google Scholar
  49. 49.
    OGC: Styled Layer Descriptor Profile of the Web Map Service Implementation Specification, Version 1.1.0 (2007)Google Scholar
  50. 50.
    OGC: 3D-Symbology Encoding Discussion Draft, Version 0.0.1 (2009)Google Scholar
  51. 51.
    OGC: OpenGIS Filter Encoding 2.0 Encoding Standard, Version 2.0.0 (2010)Google Scholar
  52. 52.
    Pan, B., Zhao, Y., Guo, X., Chen, X., Chen, W., Peng, Q.: Perception-motivated visualization for 3D city scenes. Vis. Comput. 29(4), 277–286 (2013)CrossRefGoogle Scholar
  53. 53.
    Porter, T., Duff, T.: Compositing Digital Images. In: Proceedings SIGGRAPH, vol. 18 (1984)Google Scholar
  54. 54.
    Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand, F.: Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines. In: Proceedings SIGGRAPH (2012)Google Scholar
  55. 55.
    Rio, N.D.: A Declarative Domain Independent Approach for Querying and Generating Visualizations. Ph.D. thesis, Univ. of Texas at El Paso (2012)Google Scholar
  56. 56.
    Ritschel, T., Dachsbacher, C., Grosch, T., Kautz, J.: The State of the Art in Interactive Global Illumination. Comput. Graph. Forum 31(1), 160–188 (2012)Google Scholar
  57. 57.
    Ritter, G.X., Wilson, J.N.: Handbook of Computer Vision Algorithms in Image Algebra, second edn. (2000)Google Scholar
  58. 58.
    Rost, R.J., Licea-Kane, B., Ginsburg, D., Kessenich, J.M., Lichtenbelt, B., Malan, H., Weiblen, M.: OpenGL Shading Language, third edn. (2009)Google Scholar
  59. 59.
    Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading for depicting shape and detail. ACM Trans. Graph. 25(3), 1199–1205 (2006)Google Scholar
  60. 60.
    Schnabel, O., Hurni, L.: Primitive-based Construction Theory for Diagrams in Thematic Maps. Cartogr. J. 46(2), 136–145 (2009)Google Scholar
  61. 61.
    Seligmann, D.: Interactive Intent-based Illustration: A Visual Language for 3D Worlds. Ph.D. thesis, Columbia Univ (1993)Google Scholar
  62. 62.
    Semmo, A., Hildebrandt, D., Trapp, M., Döllner, J.: Concepts for Cartography-Oriented Visualization of Virtual 3D City Models. Photogrammetrie, Fernerkundung, Geoinformation (PFG) (4) (2012)Google Scholar
  63. 63.
    Shantzis, M.A.: A Model for Efficient and Flexible Image Computing. In: Proceedings SIGGRAPH, vol. 28 (1994)Google Scholar
  64. 64.
    Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: Proceedings VL (1996)Google Scholar
  65. 65.
    Sousa, T.: Crysis next gen effects. Game Developers Conference Presentations (2008)Google Scholar
  66. 66.
    Sykora, P., Schnabel, O., Enescu, I.I., Hurni, L.: Extended Cartographic Interfaces for Open Distributed Processing. Cartographica 42(3), 209–218 (2007)Google Scholar
  67. 67.
    Tatarchuk, N., Isidoro, J.: Artist-Directable Real-Time Rain Rendering in City Environments. In: Proceedings NPH (2006)Google Scholar
  68. 68.
    Todo, H., Anjyo, K., Yokoyama, S.: Lit-Sphere extension for artistic rendering. Vis. Comput. 29(6–8), 473–480 (2013)CrossRefGoogle Scholar
  69. 69.
    Tomlin, C.D.: Geographic information systems and cartographic modeling. Prentice Hall (1990)Google Scholar
  70. 70.
    Tory, M., Möller, T.: Rethinking Visualization: A High-Level Taxonomy. In: Proceedings INFOVIS (2004)Google Scholar
  71. 71.
    Voigt, M., Franke, M., Meißner, K.: Using Expert and Empirical Knowledge for Context-aware Recommendation of Visualization Components. Adv. Lif. Sci. 5(1–2), 27–41 (2013)Google Scholar
  72. 72.
    Wenzel, C.: Real-Time atmospheric effects in games revisited. Game Developers Conference (2007)Google Scholar
  73. 73.
    Zhang, C., Chen, T.: A survey on image-based rendering. Signal Process.-Image 19(1), 1–28 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Hasso-Plattner-InstituteUniversity of PotsdamPotsdamGermany

Personalised recommendations