Advertisement

The Visual Computer

, Volume 32, Issue 1, pp 67–81 | Cite as

GPU-based radial view-based culling for continuous self-collision detection of deformable surfaces

  • Sai-Keung WongEmail author
  • Yu-Chun Cheng
Original Article

Abstract

We propose a graphics processing unit-based approach to accelerate the radial view-based culling method for continuous self-collision detection of deformable surfaces. The deformable surfaces may have small round-shaped holes and ghost triangles are used to fill the holes. We identify the key processes of the radial view-based culling method, including triangle classification, traversal of bounding volume hierarchies and handling violated triangles (i.e., the triangles intersecting with ghost triangles). We propose efficient parallel processing techniques to perform these key processes on a programmable graphics unit. We have evaluated our proposed approach on several examples. Experimental results show that our approach significantly cuts down the cost of the key processes of the radial-based culling method, compared with the serial implementation on CPU.

Keywords

Continuous collision detection Radial view-based culling Deformable surfaces 

Notes

Acknowledgments

The authors thank the anonymous referees for their constructive comments. This work was supported in part by the National Science Council of ROC (Taiwan) under the grant no. NSC 102-2221-E-009-103-MY2 and the Ministry of Science and Technology of ROC (Taiwan) under the grant no. MOST 103-2221-E-009-122-MY3.

Supplementary material

Supplementary material 1 (wmv 6248 KB)

References

  1. 1.
    Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., Kry, P.: Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29(4), 82 (2010)CrossRefGoogle Scholar
  2. 2.
    Baciu, G., Wong, W.-K.: Hardware-assisted selfcollision for deformable surfaces. In: ACM Symposium on Virtual Reality Software and Technology, pp. 129–136 (2002)Google Scholar
  3. 3.
    Govindaraju, N., Knott, D., Jain, N., Kabul, I., Tamstorf, R., Gayle, R., Lin, M., Manocha, D.: Interactive collision detection between deformable models using chromatic decomposition. ACM Trans. Graph. 24(3), 991–999 (2005)CrossRefGoogle Scholar
  4. 4.
    Gottschalk, S., Lin, M., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 171–180 (1996)Google Scholar
  5. 5.
    Govindaraju, N., Redon, S., Lin, M., Manocha, D.: Cullide: interactive collision detection between complex models in large environments using graphics hardware. In: Proceedings of ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 25–32 (2003)Google Scholar
  6. 6.
    Heidelberger, B., Teschner, M., Gross, M.: Detection of collisions and self-collisions using image-space techniques. In: WSCG, pp. 145–152 (2004)Google Scholar
  7. 7.
    Kim, D., Heo, J., Huh, J., Kim, J., Yoon, S.: HPCCD: hybrid parallel continuous collision detection using CPUs and GPUs. Proc. Korea Adv. Inst. Sci. Technol. 28(7), 1791–1800 (2009)Google Scholar
  8. 8.
    Klosowski, J., Held, M., Mitchell, J., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. Vis. Comput. Graph. 4(1), 21–36 (1998)CrossRefGoogle Scholar
  9. 9.
    Knott, D., Pai, K.: Cinder: collision and interference detection in real-time using graphics hardware. In: Proceedings of Graph Interface (2003)Google Scholar
  10. 10.
    Larsson, T., Akenine-Möller, T.: A dynamic bounding volume hierarchy for generalized collision detection. Comput. Graph. 30(3), 450–459 (2006)CrossRefGoogle Scholar
  11. 11.
    Liu, F., Harada, T., Lee, Y., Kim, Y.: Real-time collision culling of a million bodies on graphics processing units. ACM Trans. Graph. (TOG) 29(6), 154 (2010)Google Scholar
  12. 12.
    Lauterbach, C., Mo, Q., Manocha, D.: gProximity: hierarchical GPU-based operations for collision and distance queries. Comput. Graph. Forum 29(2), 419–428 (2010)CrossRefGoogle Scholar
  13. 13.
    Palmer, I., Grimsdale, R.: Collision detection for animation using sphere-trees. Comput. Graph. Forum 14(2), 105–116 (1995)CrossRefGoogle Scholar
  14. 14.
    Pabst, S., Koch, A., Straßer, W.: Fast and scalable CPU/GPU collision detection for rigid and deformable surfaces. Comput. Graph. Forum 29(5), 1605–1612 (2010)CrossRefGoogle Scholar
  15. 15.
    Pan, J., Manocha, D.: GPU-based parallel collision detection for real-time motion planning. Algorithmic Found. of Robot. IX, 211–228 (2011)Google Scholar
  16. 16.
    Provot, X.: Collision and self-collision handling in cloth model dedicated to design garments. In: Proceedings of Graphics Interface, pp. 177–189 (1997)Google Scholar
  17. 17.
    Schvartzman, S., Gason, J., Otaduy, M.: Bounded normal trees for reduced deformations of triangulated surfaces. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 75–82 (2009)Google Scholar
  18. 18.
    Tang, M., Curtis, S., Yoon, S.-E., Manocha, D.: ICCD: interactive continuous collision detection between deformable models using connectivity-based culling. IEEE Trans. Vis. Comput. Graph. 15(4), 544–557 (2009)CrossRefGoogle Scholar
  19. 19.
    Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M., Faure, F., Magnenat-Thalmann, N., Strasser, W., et al.: Collision detection for deformable objects. In: Computer Graphics Forum, pp. 61–81 (2005)Google Scholar
  20. 20.
    Tang, C., Li, S., Wang, G.: Fast continuous collision detection using parallel filter in subspace. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 71–80 (2011)Google Scholar
  21. 21.
    Tang, M., Manocha, D., Lin, J., Tong, R.: Collision-streams: fast GPU-based collision detection for deformable models. In: I3D’11: Proceedings of the 2011 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 63–70 (2011)Google Scholar
  22. 22.
    Tang, M., Manocha, D., Tong, R.: Multi-core collision detection between deformable models. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 355–360 (2009)Google Scholar
  23. 23.
    Tang, M., Yoon, S.-E., Manocha, D.: Adjacency-based culling for continuous collision detection. Vis. Comput. 24(7–9), 545–553 (2008)CrossRefGoogle Scholar
  24. 24.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. GPU Game Tools 2(4), 1–14 (1999)CrossRefGoogle Scholar
  25. 25.
    Volino, P., Magnenat-Thalmann, N.: Efficient self-collision detection on smoothly discretized surface animations using geometrical shape regularity. In: Computer Graphics Forum, pp. 155–166 (1994)Google Scholar
  26. 26.
    Vassilev, T., Spanlang, B., Chrysanthou, Y.: Fast cloth animation on walking avatars. Comput. Graph. Forum 20(3), 260–267 (2001)CrossRefGoogle Scholar
  27. 27.
    Wong, W., Baciu, G.: Dynamic interaction between deformable surfaces and non-smooth objects. IEEE Trans. Vis. Comput. Graph. 11(3), 329–340 (2005)CrossRefGoogle Scholar
  28. 28.
    Wong, S.-K., Baciu, G.: A randomized marking scheme for continuous collision detection in simulation of deformable surfaces. In: Proceedings of the ACM Int’l Conference on Virt. Reality Continuum and its Applications, pp. 181–188 (2006)Google Scholar
  29. 29.
    Wong, W.S.-K., Baciu, G.: Robust continuous collision detection for interactive deformable surfaces. Comput. Animat. Virtual Worlds 18(3), 179–192 (2007)CrossRefGoogle Scholar
  30. 30.
    Wong, S.-K., Baciu, G.: Continuous collision detection for deformable objects using permissible clusters. Vis. Comput. 1–13 (2014). doi: 10.1007/s00371-014-0933-6
  31. 31.
    Wong, S.-K., Baciu, G., Liu, C.-M., Yeh, C.-C.: Robust continuous collision detection for deformable objects. In: ACM Symp. on Virtual Reality Software and Technology, pp. 55–62 (2010)Google Scholar
  32. 32.
    Wong, S.-K., Cheng, Y.-C.: Continuous self-collision detection for deformable surfaces interacting with solid models. Comput. Graph. Forum. 33(6), 143–153 (2014)Google Scholar
  33. 33.
    Wang, B., Faure, F., Pai, D.K.: Adaptive image-based intersection volume. ACM Trans. Graph. (Proc. SIGGRAPH) 31(4), 97:1–9 (2012)Google Scholar
  34. 34.
    Wong, S.-K., Lin, W.-C., Hung, C.-H., Huang, Y.-J., Lii, S.-Y.: Radial view based culling for continuous self-collision detection of skeletal models. ACM Trans. Graph. (Proc. SIGGRAPH) 32(4), 114:1–10 (2013)Google Scholar
  35. 35.
    Wong, S.-K., Lin, W.-C., Wang, Y.-S., Hung, C.-H., Huang, Y.-J.: Dynamic radial view based culling for continuous self-collision detection. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 39–46 (2014)Google Scholar
  36. 36.
    Wong, S.-K.: High performance virtual clothing dynamics. Ph.D. thesis, Computer Science, HKUST (2005)Google Scholar
  37. 37.
    Zhang, X., Kim, Y.: Simple culling methods for continuous collision detection of deforming triangles. IEEE Trans. Vis. Comput. Graph. 18(7), 1146–1155 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations