Advertisement

The Visual Computer

, Volume 31, Issue 11, pp 1533–1552 | Cite as

Estimation of crowd density by clustering motion cues

  • Aravinda S. Rao
  • Jayavardhana Gubbi
  • Slaven Marusic
  • Marimuthu Palaniswami
Original Article

Abstract

Understanding crowd behavior using automated video analytics is a relevant research problem in recent times due to complex challenges in monitoring large gatherings. From an automated video surveillance perspective, estimation of crowd density in particular regions of the video scene is an indispensable tool in understanding crowd behavior. Crowd density estimation provides the measure of number of people in a given region at a specified time. While most of the existing computer vision methods use supervised training to arrive at density estimates, we propose an approach to estimate crowd density using motion cues and hierarchical clustering. The proposed method incorporates optical flow for motion estimation, contour analysis for crowd silhouette detection, and clustering to derive the crowd density. The proposed approach has been tested on a dataset collected at the Melbourne Cricket Ground (MCG) and two publicly available crowd datasets—Performance Evaluation of Tracking and Surveillance (PETS) 2009 and University of California, San Diego (UCSD) Pedestrian Traffic Database—with different crowd densities (medium- to high-density crowds) and in varied environmental conditions (in the presence of partial occlusions). We show that the proposed approach results in accurate estimates of crowd density. While the maximum mean error of \(3.62\) was received for MCG and PETS datasets, it was \(2.66\) for UCSD dataset. The proposed approach delivered superior performance in \(50~\%\) of the cases on PETS \(2009\) dataset when compared with existing methods.

Keywords

Video surveillance Crowd  Density estimation People counting Crowd monitoring Optical flow Clustering 

Notes

Acknowledgments

This work is partially supported by the Australian Research Council (ARC) linkage project \(\text {LP}100200430\), partnering the University of Melbourne, Melbourne Cricket Club and ARUP. Authors would like to thank representatives and staff of ARUP and MCG.

Supplementary material

371_2014_1032_MOESM1_ESM.pdf (111 kb)
ESM 1 (PDF 111 kb)

References

  1. 1.
    Acampora, G., Loia, V., Percannella, G., Vento, M.: Trainable estimators for indirect people counting: a comparative study. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 139–145. IEEE (2011)Google Scholar
  2. 2.
    Aggarwal, J.K., Cai, Q., Liao, W., Sabata, B.: Articulated and elastic non-rigid motion: a review. In: Proceedings of the 1994 IEEE Workshop on Motion of Non-Rigid and Articulated Objects, pp. 2–14. IEEE (1994)Google Scholar
  3. 3.
    Aijun, S., Mao, L., Jianfeng, L.: Real-time crowd massing risk supervision system based on massing crowd counting in public venue. In: 2009 International Symposium on Computer Network and Multimedia Technology (CNMT 2009), pp. 1–7. IEEE (2009)Google Scholar
  4. 4.
    Albiol, A., Silla, M.J., Albiol, A., Mossi, J.M.: Video analysis using corner motion statistics. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 31–38. IEEE (2009)Google Scholar
  5. 5.
    Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vis. 2(3), 283–310 (1989). doi: 10.1007/BF00158167 CrossRefGoogle Scholar
  6. 6.
    Aurich, V., Weule, J.: Non-linear gaussian filters performing edge preserving diffusion. In: Sagerer, G., Posch, S., Kummert, F. (eds.) Mustererkennung 1995. Informatik aktuell, pp. 538–545. Springer, Berlin, Heidelberg (1995)Google Scholar
  7. 7.
    Barnich, O., Van Droogenbroeck, M.: Vibe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)CrossRefGoogle Scholar
  9. 9.
    Batur, A.U., Hayes, M.H.: Adaptive active appearance models. IEEE Trans. Image Process. 14(11), 1707–1721 (2005)CrossRefGoogle Scholar
  10. 10.
    Bhaskar, H., Mihaylova, L., Maskell, S.: Articulated human body parts detection based on cluster background subtraction and foreground matching. Neurocomputing 100, 58–73 (2013)CrossRefGoogle Scholar
  11. 11.
    Bo, W., Nevatia, R.: Tracking of multiple, partially occluded humans based on static body part detection. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 951–958. IEEE (2006)Google Scholar
  12. 12.
    Chan, A., Liang, Z.S., Vasconcelos, N.: Privacy preserving crowd monitoring: counting people without people models or tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–7. IEEE (2008). doi: 10.1109/CVPR.2008.4587569
  13. 13.
    Chan, A., Vasconcelos, N.: Pedestrian traffic database. http://www.svcl.ucsd.edu/projects/peoplecnt/ (2008). Accessed 22 July 2013
  14. 14.
    Chan, A.B., Vasconcelos, N.: Counting people with low-level features and bayesian regression. IEEE Trans. Image Process. 21(4), 2160–2177 (2012). doi: 10.1109/tip.2011.2172800 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Clark, A., Green, R., Grant, R.: Perspective correction for improved visual registration using natural features. In: 23rd International Conference Image and Vision Computing New Zealand (IVCNZ 2008), pp. 1–6. IEEE (2008)Google Scholar
  16. 16.
    Conde, C., Moctezuma, D., Martn De Diego, I., Cabello, E.: Hogg: gabor and hog-based human detection for surveillance in non-controlled environments. Neurocomputing 100, 19–30 (2013)CrossRefGoogle Scholar
  17. 17.
    Conte, D., Foggia, P., Percannella, G., Tufano, F., Vento, M.: A method for counting people in crowded scenes. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 225–232. IEEE (2010)Google Scholar
  18. 18.
    Da Xu, R.Y., Kemp, M.: Multiple curvature based approach to human upper body parts detection with connected ellipse model fine-tuning. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2577–2580. IEEE (2009)Google Scholar
  19. 19.
    DiCarlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)CrossRefGoogle Scholar
  20. 20.
    Duc Thanh, N., Wanqing, L., Ogunbona, P.: A part-based template matching method for multi-view human detection. In: 24th International Conference Image and Vision Computing New Zealand (IVCNZ ’09), pp. 357–362. IEEE (2009)Google Scholar
  21. 21.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) Computer Vision—ECCV 2000. Lecture Notes in Computer Science, vol. 1843, pp. 751–767. Springer, Berlin (2000)Google Scholar
  22. 22.
    Ferryman, J.: PETS 2009 Benchmark data. http://www.cvg.rdg.ac.uk/PETS2009/a.html (2009)
  23. 23.
    Fleet, D., Jepson, A.: Computation of component image velocity from local phase information. Int. J. Comput. Vis. 5(1), 77–104 (1990)CrossRefGoogle Scholar
  24. 24.
    Gavrila, D.M.: A bayesian, exemplar-based approach to hierarchical shape matching. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1408–1421 (2007)CrossRefGoogle Scholar
  25. 25.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Inc., Upper Saddle River (2006)Google Scholar
  26. 26.
    Grimson, W.E.L., Stauffer, C., Romano, R., Lee, L.: Using adaptive tracking to classify and monitor activities in a site. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 22–29. IEEE (1998)Google Scholar
  27. 27.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4: who? when? where? what? a real time system for detecting and tracking people. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 222–227. IEEE (1998)Google Scholar
  28. 28.
    Haritaoglu, I., Harwood, D., Davis, L.S.: A fast background scene modeling and maintenance for outdoor surveillance. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 4, pp. 179–183. IEEE (2000)Google Scholar
  29. 29.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)CrossRefGoogle Scholar
  30. 30.
    Hartley, R., Kang, S.B.: Parameter-free radial distortion correction with center of distortion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1309–1321 (2007)CrossRefGoogle Scholar
  31. 31.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004), ISBN 9780521540513Google Scholar
  32. 32.
    Heeger, D.: Optical flow using spatiotemporal filters. Int. J. Comput. Vis. 1(4), 279–302 (1988)CrossRefGoogle Scholar
  33. 33.
    Heeger, D.J.: Model for the extraction of image flow. J. Opt. Soc. Am. A 4(8), 1455–1471 (1987)CrossRefGoogle Scholar
  34. 34.
    Horn, B.K., Schunck, B.G.: Determining optical flow. Technical Report. Massachusetts Institute of Technology, Cambridge (1980)Google Scholar
  35. 35.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)CrossRefGoogle Scholar
  36. 36.
    Hosub, Y., Dohyung, K., Suyoung, C., Youngjo, C.: A robust human head detection method for human tracking. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4558–4563. IEEE (2006)Google Scholar
  37. 37.
    Li Hou, Y., Pang, G.K.H.: Automated people counting at a mass site. In: IEEE International Conference on Automation and Logistics (ICAL 2008), pp. 464–469. IEEE (2008)Google Scholar
  38. 38.
    Hsu, W.L., Lin, K.F., Tsai, C.L.: Crowd density estimation based on frequency analysis. In: 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 348–351. IEEE (2011)Google Scholar
  39. 39.
    Huazhong, X., Pei, L., Lei, M.: A people counting system based on head-shoulder detection and tracking in surveillance video. In: 2010 International Conference on Computer Design and Applications (ICCDA), vol. 1, pp. V1-394–V1-398. IEEE (2010)Google Scholar
  40. 40.
    Ishii, Y., Hongo, H., Yamamoto, K., Niwa, Y.: Real-time face and head detection using four directional features. In: Proceedings of Sixth IEEE International Conference onAutomatic Face and Gesture Recognition, pp. 403–408. IEEE (2004)Google Scholar
  41. 41.
    Jacques, Jr., J.C.S., Musse, S.R., Jung, C.R.: Crowd analysis using computer vision techniques. IEEE Signal Process. Mag. 27(5), 66–77 (2010)Google Scholar
  42. 42.
    Jain, R., Nagel, H.H.: On the analysis of accumulative difference pictures from image sequences of real world scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 206–214 (1979)CrossRefGoogle Scholar
  43. 43.
    Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1296–1311 (2003)CrossRefGoogle Scholar
  44. 44.
    Jian, Y., Odobez, J.M.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’07), pp. 1–8. IEEE (2007)Google Scholar
  45. 45.
    Kambhamettu, C., Goldgof, D.B., Terzopoulos, D., Huang, T.S.: Nonrigid motion analysis. In: Young, T.Y. (ed.) Handbook of Pattern Recognition and Image Processing, vol. 2, pp. 405–430. Academic Press Inc, Orlando (1994)Google Scholar
  46. 46.
    Kilger, M.: A shadow handler in a video-based real-time traffic monitoring system. In: Proceedings of IEEE Workshop on Applications of Computer Vision, pp. 11–18. IEEE (1992)Google Scholar
  47. 47.
    Krahnstoever, N., Yu, T., Patwardhan, K.A., Gao, D.: Multi-camera person tracking in crowded environments. In: 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS-Winter), pp. 1–7. IEEE (2009)Google Scholar
  48. 48.
    Leibo, J.Z., Mutch, J., Poggio, T.: Why the brain separates face recognition from object recognition. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 711–719. Curran Associates, Inc. (2011)Google Scholar
  49. 49.
    Lu, W., Yung, N.H.C.: Three-dimensional model-based human detection in crowded scenes. IEEE Trans. Intell. Transp. Syst. 13(2), 691–703 (2012)CrossRefGoogle Scholar
  50. 50.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th international joint conference on Artificial intelligence, pp. 674–679. Morgan Kaufmann Publishers Inc. (1981)Google Scholar
  51. 51.
    Ma, L., Chen, Y., Moore, K.L.: Rational radial distortion models of camera lenses with analytical solution for distortion correction. Int. J. Inf. Acquis. 1(02), 135–147 (2004)CrossRefGoogle Scholar
  52. 52.
    Ma, W., Huang, L., Liu, C.: Crowd density analysis using co-occurrence texture features. In: 2010 5th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), pp. 170–175. IEEE (2010)Google Scholar
  53. 53.
    Ma, Y., Bai, G.: Short term prediction of crowd density using v-svr. In: 2010 IEEE Youth Conference on Information Computing and Telecommunications (YC-ICT), pp. 234–237. IEEE (2010)Google Scholar
  54. 54.
    Mao, Y., Tong, J., Xiang, W.: Estimation of crowd density using multi-local features and regression. In: 2010 8th World Congress on Intelligent Control and Automation (WCICA), pp. 6295–6300. IEEE (2010)Google Scholar
  55. 55.
    Merad, D., Aziz, K.E., Thome, N.: Fast people counting using head detection from skeleton graph. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 151–156. IEEE (2010)Google Scholar
  56. 56.
    Milan, A.: PETS 2009—ground truth. http://www.gris.informatik.tu-darmstadt.de/aandriye/data.html (2011)
  57. 57.
    Min, L., Zhaoxiang, Z., Kaiqi, H., Tieniu, T.: Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection. In: 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)Google Scholar
  58. 58.
    Min, L., Zhaoxiang, Z., Kaiqi, H., Tieniu, T.: Rapid and robust human detection and tracking based on omega-shape features. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 2545–2548. IEEE (2009)Google Scholar
  59. 59.
    Nagel, H.H.: On the estimation of optical flow: Relations between different approaches and some new results. Artif. intell. 33(3), 299–324 (1987)CrossRefGoogle Scholar
  60. 60.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)CrossRefGoogle Scholar
  61. 61.
    Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 193–199. IEEE (1997)Google Scholar
  62. 62.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Park, J., Byun, S.C., Lee, B.U.: Lens distortion correction using ideal image coordinates. IEEE Trans. Consum. Electron. 55(3), 987–991 (2009)CrossRefGoogle Scholar
  64. 64.
    Rahmalan, H., Nixon, M.S., Carter, J.N.: On crowd density estimation for surveillance. In: The Institution of Engineering and Technology Conference on Crime and Security, pp. 540–545. IEEE (2006)Google Scholar
  65. 65.
    Rao, A.S., Gubbi, J., Marusic, S., Stanley, P., Palaniswami, M.: Crowd density estimation based on optical flow and hierarchical clustering. In: International Conference on Advances in Computing, Communications and Informatics (ICACCI 2013), pp. 494–499. IEEE (2013)Google Scholar
  66. 66.
    Rodriguez, M., Laptev, I., Sivic, J., Audibert, J.Y.: Density-aware person detection and tracking in crowds. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2423–2430. IEEE (2011)Google Scholar
  67. 67.
    Salti, S., Cavallaro, A., Di Stefano, L.: Adaptive appearance modeling for video tracking: survey and evaluation. IEEE Trans. Image Process. 21(10), 4334–4348 (2012)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Sand, P., Teller, S.: Particle video: long-range motion estimation using point trajectories. Int. J. Comput. Vis. 80(1), 72–91 (2008)CrossRefGoogle Scholar
  69. 69.
    Seki, M., Wada, T., Fujiwara, H., Sumi, K.: Background subtraction based on cooccurrence of image variations. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-65–II-72. IEEE (2003)Google Scholar
  70. 70.
    Singh, A., Allen, P.: Image-flow computation: an estimation-theoretic framework and a unified perspective. CVGIP Image Underst. 56(2), 152–177 (1992)zbMATHCrossRefGoogle Scholar
  71. 71.
    Smith, S.M., Brady, J.M.: Susana new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)CrossRefGoogle Scholar
  72. 72.
    Song, M., Tao, D., Maybank, S.J.: Sparse camera network for visual surveillance—a comprehensive survey. Computing Research Repository abs/1302.0446 (2013)Google Scholar
  73. 73.
    Srivastava, S., Ng, K.K., Delp, E.J.: Crowd flow estimation using multiple visual features for scenes with changing crowd densities. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 60–65. IEEE (2011)Google Scholar
  74. 74.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252. IEEE (1999)Google Scholar
  75. 75.
    Subburaman, V., Descamps, A., Carincotte, C.: Counting people in the crowd using a generic head detector. In: 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 470–475. IEEE (2012). doi: 10.1109/AVSS.2012.87
  76. 76.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)Google Scholar
  77. 77.
    Tommy, R., Mohan, S.: An approach for fully automating perspective images based on symmetry and line intersection. In: 2011 International Conference on Image Information Processing (ICIIP), pp. 1–5. IEEE (2011)Google Scholar
  78. 78.
    Tosato, D., Farenzena, M., Cristani, M., Murino, V.: Part-based human detection on riemannian manifolds. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 3469–3472. IEEE (2010)Google Scholar
  79. 79.
    Uras, S., Girosi, F., Verri, A., Torre, V.: A computational approach to motion perception. Biol. Cybern. 60(2), 79–87 (1988). doi: 10.1007/BF00202895 CrossRefGoogle Scholar
  80. 80.
    Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29(10), 983–1009 (2013). doi: 10.1007/s00371-012-0752-6 CrossRefGoogle Scholar
  81. 81.
    Wang, R.: The primary visual cortex (straite cortex, v1). http://fourier.eng.hmc.edu/e180/lectures/v1/node1.html (2013). Accessed 09 Aug 2013
  82. 82.
    Waxman, A., Wu, J., Bergholm, F.: Convected activation profiles and the measurement of visual motion. In: Computer Society Conference on Computer Vision and Pattern Recognition, pp. 717–723. IEEE (1988) Google Scholar
  83. 83.
    Willick, D., Yang, Y.H.: Experimental evaluation of motion constraint equations. CVGIP Image Underst. 54(2), 206–214 (1991)zbMATHCrossRefGoogle Scholar
  84. 84.
    Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005). doi: 10.3354/cr030079 CrossRefGoogle Scholar
  85. 85.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, pp. 51–56 (1996)Google Scholar
  86. 86.
    Wu, X., Liang, G., Lee, K.K., Xu, Y.: Crowd density estimation using texture analysis and learning. In: IEEE International Conference on Robotics and Biomimetics (ROBIO ’06), pp. 214–219. IEEE (2006)Google Scholar
  87. 87.
    Xiao, J., Cheng, H., Sawhney, H., Rao, C., Isnardi, M.: Bilateral filtering-based optical flow estimation with occlusion detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—ECCV 2006. Lecture Notes in Computer Science, vol 3951, pp. 211–224. Springer, Berlin, Heidelberg (2006)Google Scholar
  88. 88.
    Xinbo, G., Ya, S., Xuelong, L., Dacheng, T.: A review of active appearance models. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(2), 145–158 (2010)CrossRefGoogle Scholar
  89. 89.
    Yang, S.J., Ho, C.C., Chen, J.Y., Chang, C.Y.: Practical homography-based perspective correction method for license plate recognition. In: 2012 International Conference on Information Security and Intelligence Control (ISIC), pp. 198–201. IEEE (2012)Google Scholar
  90. 90.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–45 (2006)CrossRefGoogle Scholar
  91. 91.
    Yu-Ting, C., Chu-Song, C., Yi-Ping, H., Kuang-Yu, C.: Multi-class multi-instance boosting for part-based human detection. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1177–1184. IEEE (2009)Google Scholar
  92. 92.
    Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.Q.: Crowd analysis: a survey. Mach. Vis. Appl. 19(5–6), 345–357 (2008)zbMATHCrossRefGoogle Scholar
  93. 93.
    Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’ 03), vol 2, pp. II-459–II-66. IEEE (2003)Google Scholar
  94. 94.
    Zhao, T., Nevatia, R.: Tracking multiple humans in complex situations. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1208–1221 (2004). doi: 10.1109/TPAMI.2004.73 CrossRefGoogle Scholar
  95. 95.
    Zhao, T., Nevatia, R., Lv, F.: Segmentation and tracking of multiple humans in complex situations. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-194–II-201. IEEE (2001)Google Scholar
  96. 96.
    Zhao, T., Nevatia, R., Wu, B.: Segmentation and tracking of multiple humans in crowded environments. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1198–1211 (2008)CrossRefGoogle Scholar
  97. 97.
    Zhe, L., Davis, L.S.: Shape-based human detection and segmentation via hierarchical part-template matching. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 604–618 (2010)CrossRefGoogle Scholar
  98. 98.
    Zhou, J., Hoang, J.: Real time robust human detection and tracking system. In: Proceedings of the IEEE Computer Society Conference onComputer Vision and Pattern Recognition—Workshops, pp. 149–149. IEEE (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Aravinda S. Rao
    • 1
  • Jayavardhana Gubbi
    • 1
  • Slaven Marusic
    • 1
  • Marimuthu Palaniswami
    • 1
  1. 1.ISSNIP, Department of Electrical and Electronic EngineeringThe University of MelbourneParkvilleAustralia

Personalised recommendations