The Visual Computer

, Volume 31, Issue 10, pp 1365–1381

Direct blue noise resampling of meshes of arbitrary topology

Original Article

Abstract

We propose in this paper a novel sampling method and an improvement of a spectral analysis tool that both handle complex shapes and sharp features. Starting from an arbitrary triangular mesh, our algorithm generates a new sampling pattern that exhibits blue noise properties. The fidelity to the original surface being essential, our algorithm preserves sharp features. Our sampling is based on a discrete dart throwing applied directly on the surface to get good blue noise sampling patterns. It is also driven by a feature detection tool to avoid geometric aliasing. Experimental results prove that our sampling scheme is faster than techniques based on brute-force dart throwing, and produces sampling patterns with blue noise properties even for complex surfaces of arbitrary topology. In parallel, we also propose an improvement of a tool initially developed for the spectral analysis of non-uniform sampling patterns, that may generate biased results with complex shapes. The proposed improvement overcomes this problem.

Keywords

Blue noise Sampling Sampling analysis Feature-preservation  

References

  1. 1.
    Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. In: Proceedings of the annual conference on Computer graphics and Interactive Techniques, pp. 347–354. ACM, New York, NY, USA (2002)Google Scholar
  2. 2.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: measuring errors between surfaces using the hausdorff distance. Proc. IEEE Int. Conf. Multimed. Expos. 1, 705–708 (2002)CrossRefGoogle Scholar
  3. 3.
    Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: a variant of lloyd’s method. ACM Trans. Graph. 28(3), 86:1–86:8 (2009)Google Scholar
  4. 4.
    Bowers, J., Wang, R., Wei, L.Y., Maletz, D.: Parallel poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29(6), 166:1–166:10 (2010)Google Scholar
  5. 5.
    Chen, R., Gotsman, C.: Parallel blue-noise sampling by constrained farthest point optimization. Comput. Graph. Forum 31(5), 1775–1785 (2012)CrossRefGoogle Scholar
  6. 6.
    Chen, Z., Yuan, Z., Choi, Y.K., Liu, L., Wang, W.: Variational blue noise sampling. IEEE Trans. Vis. Comput. Graph. 18(10), 1784–1796 (2012)CrossRefGoogle Scholar
  7. 7.
    Cline, D., Jeschke, S., Razdan, A., White, K., Wonka, P.: Dart throwing on surfaces. Comput. Graph. Forum 28(4), 1217–1226 (2009)CrossRefGoogle Scholar
  8. 8.
    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 51–72 (1986). doi:10.1145/7529.8927 CrossRefGoogle Scholar
  9. 9.
    Corsini, M., Cignoni, P., Scopigno, R.: Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. Comput. Graph. 18(6), 914–924 (2012)CrossRefGoogle Scholar
  10. 10.
    Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 152:1–152:11 (2013)Google Scholar
  11. 11.
    Crow, F.C.: The aliasing problem in computer-generated shaded images. Commun. ACM 20(11), 799–805 (1977)CrossRefGoogle Scholar
  12. 12.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dippé, M.A.Z., Wold, E.H.: Antialiasing through stochastic sampling. In: Proceedings of the annual conference on Computer graphics and Interactive Techniques, pp 69–78. ACM, New York, NY, USA (1985)Google Scholar
  14. 14.
    Dunbar, D., Humphreys, G.: A spatial data structure for fast poisson-disk sample generation. In: ACM SIGGRAPH papers, pp. 503–508. ACM (2006)Google Scholar
  15. 15.
    Fu, Y., Zhou, B.: Direct sampling on surfaces for high quality remeshing. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, pp. 115–124. ACM, New York, NY, USA (2008)Google Scholar
  16. 16.
    Gamito, M.N., Maddock, S.C.: Accurate multidimensional poisson-disk sampling. ACM Trans. Graph. 29(1), 8:1–8:19 (2009). doi:10.1145/1640443.1640451
  17. 17.
    Ge, X., Wei, L.Y., Wang, Y.: Bilateral Blue Noise Sampling. The Ohio State University, Ohio, USA, Tech. rep. (2013)Google Scholar
  18. 18.
    Geng, B., Zhang, H., Wang, H., Wang, G.: Approximate poisson disk sampling on mesh. J. Comput. Aided Des. Comput. Graph. 23(1), 62–69 (2011)Google Scholar
  19. 19.
    Heck, D., Schlömer, T., Deussen, O.: Blue noise sampling with controlled aliasing. ACM Trans. Graph. 32(3), 25:1–25:12 (2013)Google Scholar
  20. 20.
    Kim, H.S., Choi, H.K., Lee, K.H.: Feature detection of triangular meshes based on tensor voting theory. J. Comput. Aided Des. Comput. Graph. 41(1), 47–58 (2009)Google Scholar
  21. 21.
    Lagae, A., Dutré, P.: A comparison of methods for generating Poisson disk distributions. Comput. Graph. Forum 27(1), 114–129 (2008). doi:10.1111/j.1467-8659.2007.01100.x. http://www.blackwell-synergy.com
  22. 22.
    Li, H., Lo, K.Y., Leung, M.K., Fu, C.W.: Dual poisson-disk tiling: an efficient method for distributing features on arbitrary surfaces. IEEE Trans. Vis. Comput. Graph. 14(5), 982–998 (2008)Google Scholar
  23. 23.
    Li, H., Wei, L.Y., Sander, P.V., Fu, C.W.: Anisotropic blue noise sampling. In: ACM SIGGRAPH ASIA papers, pp. 167:1–167:12. ACM (2010)Google Scholar
  24. 24.
    Lloyd, S.P.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28, 129–137 (1982)Google Scholar
  25. 25.
    Öztireli, A.C., Alexa, M., Gross, M.: Spectral sampling of manifolds. ACM SIGGRAPH Asia 2010 papers. SIGGRAPH ASIA ’10, pp. 1–8. ACM, New York, NY, USA (2010)Google Scholar
  26. 26.
    Peyrot, J.L., Payan, F., Antonini, M.: Feature-preserving Direct Blue Noise Sampling for Surface Meshes. In: Eurographics (Short Papers), pp. 9–12. doi:10.2312/conf/EG2013/short/009-912. http://diglib.eg.org/EG/DL/conf/EG2013/short/009-912.pdf
  27. 27.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA (2004)Google Scholar
  28. 28.
    Schlömer, T., Heck, D., Deussen, O.: Farthest-point optimized point sets with maximized minimum distance. In: Proceedings of the ACM SIGGRAPH symposium on high performance graphics, HPG ’11, pp. 135–142. ACM, New York, NY, USA (2011). doi:10.1145/2018323.2018345
  29. 29.
    Schmidt, R., Grimm, C., Wyvill, B.: Interactive decal compositing with discrete exponential maps. In: ACM SIGGRAPH papers, pp. 605–613. ACM, New York, NY, USA (2006)Google Scholar
  30. 30.
    Wei, L.Y.: Multi-class blue noise sampling. ACM Trans. Graph. 29(4), 79:1–79:8 (2010). doi:10.1145/1778765.1778816.
  31. 31.
    Wei, L.Y., Wang, R.: Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30(4), 50:1–50:10 (2011). doi:10.1145/2010324.1964945.
  32. 32.
    White, K.B., Cline, D., Egbert, P.K.: Poisson disk point sets by hierarchical dart throwing. Symposium on interactive ray tracing. pp.129–132 (2007)Google Scholar
  33. 33.
    Xu, Y., Hu, R., Gotsman, C., Liu, L.: Blue noise sampling of surfaces. Comput. Graph. 36, 232–240 (2012)CrossRefGoogle Scholar
  34. 34.
    Xu, Y., Liu, L., Gotsman, C., Gortler, S.J.: Capacity-constrained delaunay triangulation for point distributions. Comput. Graph. 35(3), 510–516 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jean-Luc Peyrot
    • 1
  • Frédéric Payan
    • 1
  • Marc Antonini
    • 1
  1. 1.Laboratory I3SUniversity Nice, Sophia Antipolis, CNRS (UMR 7271)Sophia AntipolisFrance

Personalised recommendations