The Visual Computer

, Volume 31, Issue 10, pp 1365–1381 | Cite as

Direct blue noise resampling of meshes of arbitrary topology

  • Jean-Luc Peyrot
  • Frédéric Payan
  • Marc Antonini
Original Article


We propose in this paper a novel sampling method and an improvement of a spectral analysis tool that both handle complex shapes and sharp features. Starting from an arbitrary triangular mesh, our algorithm generates a new sampling pattern that exhibits blue noise properties. The fidelity to the original surface being essential, our algorithm preserves sharp features. Our sampling is based on a discrete dart throwing applied directly on the surface to get good blue noise sampling patterns. It is also driven by a feature detection tool to avoid geometric aliasing. Experimental results prove that our sampling scheme is faster than techniques based on brute-force dart throwing, and produces sampling patterns with blue noise properties even for complex surfaces of arbitrary topology. In parallel, we also propose an improvement of a tool initially developed for the spectral analysis of non-uniform sampling patterns, that may generate biased results with complex shapes. The proposed improvement overcomes this problem.


Blue noise Sampling Sampling analysis Feature-preservation  



We are particularly grateful to Mr. Paolo Cignoni and Miss Ruizhen Hu for answering our questions and sending us several data for our comparisons. We also thank Mr. Li-Yi Wei and Mr. Rui Wang for providing us with their executable. We also would like to thank Leonardo Hidd Fonteles for his help on Dijkstra’s implementation.


  1. 1.
    Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. In: Proceedings of the annual conference on Computer graphics and Interactive Techniques, pp. 347–354. ACM, New York, NY, USA (2002)Google Scholar
  2. 2.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: measuring errors between surfaces using the hausdorff distance. Proc. IEEE Int. Conf. Multimed. Expos. 1, 705–708 (2002)CrossRefGoogle Scholar
  3. 3.
    Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: a variant of lloyd’s method. ACM Trans. Graph. 28(3), 86:1–86:8 (2009)Google Scholar
  4. 4.
    Bowers, J., Wang, R., Wei, L.Y., Maletz, D.: Parallel poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29(6), 166:1–166:10 (2010)Google Scholar
  5. 5.
    Chen, R., Gotsman, C.: Parallel blue-noise sampling by constrained farthest point optimization. Comput. Graph. Forum 31(5), 1775–1785 (2012)CrossRefGoogle Scholar
  6. 6.
    Chen, Z., Yuan, Z., Choi, Y.K., Liu, L., Wang, W.: Variational blue noise sampling. IEEE Trans. Vis. Comput. Graph. 18(10), 1784–1796 (2012)CrossRefGoogle Scholar
  7. 7.
    Cline, D., Jeschke, S., Razdan, A., White, K., Wonka, P.: Dart throwing on surfaces. Comput. Graph. Forum 28(4), 1217–1226 (2009)CrossRefGoogle Scholar
  8. 8.
    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 51–72 (1986). doi: 10.1145/7529.8927 CrossRefGoogle Scholar
  9. 9.
    Corsini, M., Cignoni, P., Scopigno, R.: Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. Comput. Graph. 18(6), 914–924 (2012)CrossRefGoogle Scholar
  10. 10.
    Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 152:1–152:11 (2013)Google Scholar
  11. 11.
    Crow, F.C.: The aliasing problem in computer-generated shaded images. Commun. ACM 20(11), 799–805 (1977)CrossRefGoogle Scholar
  12. 12.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dippé, M.A.Z., Wold, E.H.: Antialiasing through stochastic sampling. In: Proceedings of the annual conference on Computer graphics and Interactive Techniques, pp 69–78. ACM, New York, NY, USA (1985)Google Scholar
  14. 14.
    Dunbar, D., Humphreys, G.: A spatial data structure for fast poisson-disk sample generation. In: ACM SIGGRAPH papers, pp. 503–508. ACM (2006)Google Scholar
  15. 15.
    Fu, Y., Zhou, B.: Direct sampling on surfaces for high quality remeshing. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, pp. 115–124. ACM, New York, NY, USA (2008)Google Scholar
  16. 16.
    Gamito, M.N., Maddock, S.C.: Accurate multidimensional poisson-disk sampling. ACM Trans. Graph. 29(1), 8:1–8:19 (2009). doi: 10.1145/1640443.1640451
  17. 17.
    Ge, X., Wei, L.Y., Wang, Y.: Bilateral Blue Noise Sampling. The Ohio State University, Ohio, USA, Tech. rep. (2013)Google Scholar
  18. 18.
    Geng, B., Zhang, H., Wang, H., Wang, G.: Approximate poisson disk sampling on mesh. J. Comput. Aided Des. Comput. Graph. 23(1), 62–69 (2011)Google Scholar
  19. 19.
    Heck, D., Schlömer, T., Deussen, O.: Blue noise sampling with controlled aliasing. ACM Trans. Graph. 32(3), 25:1–25:12 (2013)Google Scholar
  20. 20.
    Kim, H.S., Choi, H.K., Lee, K.H.: Feature detection of triangular meshes based on tensor voting theory. J. Comput. Aided Des. Comput. Graph. 41(1), 47–58 (2009)Google Scholar
  21. 21.
    Lagae, A., Dutré, P.: A comparison of methods for generating Poisson disk distributions. Comput. Graph. Forum 27(1), 114–129 (2008). doi: 10.1111/j.1467-8659.2007.01100.x.
  22. 22.
    Li, H., Lo, K.Y., Leung, M.K., Fu, C.W.: Dual poisson-disk tiling: an efficient method for distributing features on arbitrary surfaces. IEEE Trans. Vis. Comput. Graph. 14(5), 982–998 (2008)Google Scholar
  23. 23.
    Li, H., Wei, L.Y., Sander, P.V., Fu, C.W.: Anisotropic blue noise sampling. In: ACM SIGGRAPH ASIA papers, pp. 167:1–167:12. ACM (2010)Google Scholar
  24. 24.
    Lloyd, S.P.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28, 129–137 (1982)Google Scholar
  25. 25.
    Öztireli, A.C., Alexa, M., Gross, M.: Spectral sampling of manifolds. ACM SIGGRAPH Asia 2010 papers. SIGGRAPH ASIA ’10, pp. 1–8. ACM, New York, NY, USA (2010)Google Scholar
  26. 26.
    Peyrot, J.L., Payan, F., Antonini, M.: Feature-preserving Direct Blue Noise Sampling for Surface Meshes. In: Eurographics (Short Papers), pp. 9–12. doi: 10.2312/conf/EG2013/short/009-912.
  27. 27.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA (2004)Google Scholar
  28. 28.
    Schlömer, T., Heck, D., Deussen, O.: Farthest-point optimized point sets with maximized minimum distance. In: Proceedings of the ACM SIGGRAPH symposium on high performance graphics, HPG ’11, pp. 135–142. ACM, New York, NY, USA (2011). doi: 10.1145/2018323.2018345
  29. 29.
    Schmidt, R., Grimm, C., Wyvill, B.: Interactive decal compositing with discrete exponential maps. In: ACM SIGGRAPH papers, pp. 605–613. ACM, New York, NY, USA (2006)Google Scholar
  30. 30.
    Wei, L.Y.: Multi-class blue noise sampling. ACM Trans. Graph. 29(4), 79:1–79:8 (2010). doi: 10.1145/1778765.1778816.
  31. 31.
    Wei, L.Y., Wang, R.: Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30(4), 50:1–50:10 (2011). doi: 10.1145/2010324.1964945.
  32. 32.
    White, K.B., Cline, D., Egbert, P.K.: Poisson disk point sets by hierarchical dart throwing. Symposium on interactive ray tracing. pp.129–132 (2007)Google Scholar
  33. 33.
    Xu, Y., Hu, R., Gotsman, C., Liu, L.: Blue noise sampling of surfaces. Comput. Graph. 36, 232–240 (2012)CrossRefGoogle Scholar
  34. 34.
    Xu, Y., Liu, L., Gotsman, C., Gortler, S.J.: Capacity-constrained delaunay triangulation for point distributions. Comput. Graph. 35(3), 510–516 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jean-Luc Peyrot
    • 1
  • Frédéric Payan
    • 1
  • Marc Antonini
    • 1
  1. 1.Laboratory I3SUniversity Nice, Sophia Antipolis, CNRS (UMR 7271)Sophia AntipolisFrance

Personalised recommendations