Advertisement

The Visual Computer

, Volume 30, Issue 6–8, pp 939–948 | Cite as

3D segmentation and labeling of fractured bone from CT images

  • Félix PaulanoEmail author
  • Juan J. Jiménez
  • Rubén Pulido
Original Article

Abstract

The segmentation of fractured bone from computed tomographies (CT images) is an important process in medical visualization and simulation, because it enables such applications to use data of a specific patient. On the other hand, the labeling of fractured bone usually requires the participation of an expert. Moreover, close fragment can be joined after the segmentation because of their proximity and the resolution of the CT image. Classical methods perform well in the segmentation of healthy bone, but they are not able to identify bone fragments separately. In this paper, we propose a method to segment and label bone fragments from CT images. Labeling involves the identification of bone fragments separately. The method is based on 2D region growing and requires minimal user interaction. In addition, the presented method is able to separate wrongly joined fragments during the segmentation process.

Keywords

Fractured bone identification Segmentation Labeling Split bone fragments 

Notes

Acknowledgments

This work has been partially supported by the Ministerio de Economía y Competitividad and the European Union (via ERDF funds) through the research project TIN2011-25259.

References

  1. 1.
    Egol, K., Koval, K.J., Zuckerman, J.D.: Handbook of Fractures. Wolters Kluwer/Lippincott Williams & Wilkins Health (2010)Google Scholar
  2. 2.
    Neubauer, A., Bühler, K., Wegenkittl, R., Rauchberger, A., Rieger, M.: Advanced virtual corrective osteotomy. Int. Congr. Ser. 1281, 684–689 (2005)CrossRefGoogle Scholar
  3. 3.
    Pettersson, J., Knutsson, H., Borga, M.: Non-rigid registration for automatic fracture segmentation. In: IEEE International Conference on Image Processing, pp. 1185–1188 (2006)Google Scholar
  4. 4.
    Fornaro, J., Székely, G., Harders, M.: Semi-automatic segmentation of fractured pelvic bones for surgical planning. Biomed. Simul. 5958, 82–89 (2010)CrossRefGoogle Scholar
  5. 5.
    Descoteaux, M., Audette, M., Chinzei, K., Siddiqi, K.: Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. In: Duncan, J.S., Gerig, G. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2005, pp. 9–16. Springer, Berlin (2005)Google Scholar
  6. 6.
    Tomazevic, M., Kreuh, D., Kristan, A., Puketa, V., Cimerman, M.: Preoperative planning program tool in treatment of articular fractures: process of segmentation procedure. In: XII Mediterranean Conference on Medical and Biological Engineering and Computing, vol. 29, pp. 430–433 (2010)Google Scholar
  7. 7.
    Tassani, S., Matsopoulos, G.K., Baruffaldi, F.: 3D identification of trabecular bone fracture zone using an automatic image registration scheme: a validation study. J. Biomech. 11(45), 2035–2040 (2012)CrossRefGoogle Scholar
  8. 8.
    Lee, P., Lai, J., Hu, Y., Huang, C., Tsai, Y., Ueng, W.: Virtual 3D planning of pelvic fracture reduction and implant placement. Biomed. Eng. Appl. Basis Commun. 3(24), 245–262 (2012)CrossRefGoogle Scholar
  9. 9.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron Imaging 13(1), 146–168 (2004)Google Scholar
  10. 10.
    Zhang, J., Yan, C., Chui, C., Ong, S.: Fast segmentation of bone in CT images using 3D adaptive thresholding. Comput. Biol. Med. 40(2), 231–236 (2010)Google Scholar
  11. 11.
    Justice, R.K., Stokely, E.M., Strobel, J.S., Ideker, R.E., Smith, W.M.: Medical image segmentation using 3D seeded region growing. In: Proceedings of SPIE 3034, Medical Imaging 1997: Image Processing, vol. 3034, pp. 900–910 (1997)Google Scholar
  12. 12.
    Fan, J., Zeng, G., Body, M., Hacid, M.: Seeded region growing: an extensive and comparative study. Pattern Recognit. Lett. 26(8), 1139–1156 (2005)CrossRefGoogle Scholar
  13. 13.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)CrossRefGoogle Scholar
  14. 14.
    Malan, D.F., Botha, C.P., Valstar, E.R.: Voxel classification and graph cuts for automated segmentation of pathological periprosthetic hip anatomy. Int. J. Comput. Assist. Radiol. Surg. 8(1), 63–74 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Félix Paulano
    • 1
    Email author
  • Juan J. Jiménez
    • 2
  • Rubén Pulido
    • 1
  1. 1.University of JaénJaénSpain
  2. 2.University of JaénJaénSpain

Personalised recommendations