The Visual Computer

, Volume 30, Issue 6–8, pp 773–785 | Cite as

Efficient triangulation of Poisson-disk sampled point sets

  • Jianwei Guo
  • Dong-Ming Yan
  • Guanbo Bao
  • Weiming Dong
  • Xiaopeng Zhang
  • Peter Wonka
Original Article


In this paper, we present a simple yet efficient algorithm for triangulating a 2D input domain containing a Poisson-disk sampled point set. The proposed algorithm combines a regular grid and a discrete clustering approach to speedup the triangulation. Moreover, our triangulation algorithm is flexible and performs well on more general point sets such as adaptive, non-maximal Poisson-disk sets. The experimental results demonstrate that our algorithm is robust for a wide range of input domains and achieves significant performance improvement compared to the current state-of-the-art approaches.


Triangulation Poisson-disk sampling Geometric algorithms 



This research was partially funded by National Natural Science Foundation of China (Nos. 61372168, 61172104, 61331018, and 61271431), the KAUST Visual Computing Center, and the National Science Foundation.


  1. 1.
    Barber, C.B., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Blelloch, G.E., Miller, G.L., Hardwick, J.C., Talmor, D.: Design and implementation of a practical parallel delaunay algorithm. Algorithmica 24(3–4), 243–269 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    CGAL, Computational Geometry Algorithms Library.
  4. 4.
    Cheng, S.W., Dey, T.K., Levine, J.A.: A practical Delaunay meshing algorithm for a large class of domains. In: Proceedings of the 16th International Meshing Roundtable, pp. 477–494 (2007)Google Scholar
  5. 5.
    Cheng, S.W., Dey, T.K., Shewchuk, J.R.: Delaunay Mesh Generation. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  6. 6.
    Chew, L.P.: Guaranteed-quality triangular meshes. Department of Computer Science Tech Report 89-983, Cornell University (1989)Google Scholar
  7. 7.
    Chrisochoides, N., Nave, D.: Parallel delaunay mesh generation kernel. Int. J. Numer. Methods Eng. 58(2), 161–176 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. (Proc. SIGGRAPH) 23(3), 905–914 (2004)CrossRefGoogle Scholar
  9. 9.
    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 69–78 (1986)Google Scholar
  10. 10.
    Dunbar, D., Humphreys, G.: A spatial data structure for fast poisson-disk sample generation. ACM Trans. Graph. (Proc. SIGGRAPH) 25(3), 503–508 (2006)CrossRefGoogle Scholar
  11. 11.
    Ebeida, M.S., Mitchell, S.A., Davidson, A.A., Patney, A., Knupp, P.M., Owens, J.D.: Efficient and good delaunay meshes from random points. Comput. Aided Des. 43(11), 1506–1515 (2011)CrossRefGoogle Scholar
  12. 12.
    Ebeida, M.S., Mitchell, S.A., Patney, A., Davidson, A.A., Owens, J.D.: A simple algorithm for maximal poisson-disk sampling in high dimensions. Comput. Graph. Forum (Proc. EUROGRAPHICS) 31(2), 785–794 (2012)CrossRefGoogle Scholar
  13. 13.
    Ebeida, M.S., Patney, A., Mitchell, S.A., Davidson, A., Knupp, P.M., Owens, J.D.: Efficient maximal poisson-disk sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 30(4), 49:1–49:12 (2011)CrossRefGoogle Scholar
  14. 14.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gamito, M.N., Maddock, S.C.: Accurate multidimensional poisson-disk sampling. ACM Trans. Graph. 29(1), 8:1–8:19 (2009)Google Scholar
  16. 16.
    Hoff III, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 277–286 (1999)Google Scholar
  17. 17.
    Jones, T.R.: Efficient generation of poisson-disk sampling patterns. J. Graph. Tools 11(2), 27–36 (2006)Google Scholar
  18. 18.
    Lagae, A., Dutré, P.: A comparison of methods for generating poisson disk distributions. Comput. Graph. Forum 27(1), 114–129 (2008)Google Scholar
  19. 19.
    Lu, Y., Lien, J.-M., Ghosh, M., Amato, N.M.: Alpha-decomposition of polygons. Comput. Graph. (Proc. SMI) 36(5), 466–476 (2012)Google Scholar
  20. 20.
    Qi, M., Cao, T.T., Tan, T.S.: Computing 2d constrained delaunay triangulation using the gpu. IEEE Trans. Vis. Comput. Graph. 19(5), 736–748 (2013)CrossRefGoogle Scholar
  21. 21.
    Rong, G., Tan, T.S., Cao, T.T., et al.: Computing two-dimensional Delaunay triangulation using graphics hardware. In: Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, pp. 89–97. ACM (2008)Google Scholar
  22. 22.
    Schechter, H., Bridson, R.: Ghost sph for animating water. ACM Trans. Graph. (Proc. SIGGRAPH) 31(4), 61:1–61:8 (2012)CrossRefGoogle Scholar
  23. 23.
    Shewchuk, J.R.: Triangle: engineering a 2d quality mesh generator and delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996)CrossRefGoogle Scholar
  24. 24.
    Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl. 22(1), 21–74 (2002)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Wei, L.Y.: Parallel poisson disk sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 27(3), 20:1–20:9 (2008)Google Scholar
  26. 26.
    Wei, L.Y.: Multi-class blue noise sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 29(4), 79:1–79:8 (2010)Google Scholar
  27. 27.
    White, K.B., Cline, D., Egbert, P.K.: Poisson disk point sets by hierarchical dart throwing. In: Proceedings of the IEEE Symposium on Interactive Ray Tracing, pp. 129–132 (2007)Google Scholar
  28. 28.
    Yan, D.M., Wonka, P.: Gap processing for adaptive maximal poisson-disk sampling. ACM Trans. Graph. 32(5), 148:1–148:15 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LIAMA-NLPR, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.Visual Computing CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations