Animation of trees in wind using sparse motion capture data

  • 320 Accesses

  • 4 Citations


We present a novel approach to animate an entire tree from the motion of a few branches. Animating medium sized trees in wind presents an arduous situation because it is difficult to create the motion of flexible branches in turbulent wind flows. The animation of trees in wind is important in biology and ecology where understanding how trees move can inform us about the cultivation of trees and forests designed to withstand strong winds. Animation of trees in wind is also useful in the production of films and games. We use passive optical motion capture to record the motion of retro-reflective markers placed on some of the tree branch tips. These motion data are processed to remove noise, create motion traces, and add missing data. Given the processed motion data, we solve for wind velocity in a discrete formulation of aerodynamic drag and tree branch dynamics. This sparse collection of wind velocity samples is interpolated over the volume of the crown and enriched with a turbulence model to create a wind field that drives the animation of an entire tree crown. The wind field can also be used to drive the animation of other similar trees. In this process, 300 KB of data recorded from 10 s of tree motion can be processed and replayed in 16 s of computation time, not including rendering.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Akagi, Y., Kitajima, K.: Computer animation of swaying trees based on physical simulation. Comput. Graph. 30(4), 529–539 (2006). doi:10.1016/j.cag.2006.03.017

  2. 2.

    Barbič, J., Zhao, Y.: Real-time large-deformation substructuring. ACM Trans. Graph. (SIGGRAPH 2011) 30(4), 91:1–91:7 (2011)

  3. 3.

    Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. (SIGGRAPH) 27(3), 63:1–63:12 (2008)

  4. 4.

    Bertails, F.: Linear time super-helices. Comput. Graph. Forum 28(2), 417–426 (2009)

  5. 5.

    Diener, J., Reveret, L., Fiume, E.: Hierarchical retargetting of 2d motion fields to the animation of 3d plant models. Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation. SCA ’06, pp. 187–195. Eurographics Association, Aire-la-Ville, Switzerland (2006)

  6. 6.

    Diener, J., Rodriguez, M., Baboud, L., Reveret, L.: Wind projection basis for real-time animation of trees. Comput. Graph. Forum 28(2), 533–540 (2009)

  7. 7.

    Ganz, M., Loog, M., Brandt, S., Nielsen, M.: Dense iterative contextual pixel classification using kriging. In: Computer vision and pattern recognition workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference, pp. 87–93 (2009)

  8. 8.

    Habel, R., Kusternig, A., Wimmer, M.: Physically guided animation of trees. In: Computer Graphics Forum (Proceedings EUROGRAPHICS 2009), vol. 28, pp. 523–532 (2009)

  9. 9.

    Hu, S., Chiba, N., He, D.: Realistic animation of interactive trees. Vis. Comput. 28(6–8), 859–868 (2012)

  10. 10.

    James, K.R., Haritos, N., Ades, P.K.: Mechanical stability of trees under dynamic loads. Am. J. Botany 93(10), 1522–1530 (2006)

  11. 11.

    Kwatra, N., Wojtan, C., Carlson, M., Essa, I.A., Mucha, P.J., Turk, G.: Fluid simulation with articulated bodies. IEEE Trans. Vis. Comput. Graph. 16(1), 70–80 (2010)

  12. 12.

    Li, C., Deussen, O., Song, Y.Z., Willis, P., Hall, P.: Modeling and generating moving trees from video. ACM Trans. Graph. 30(6), 127:1–127:12 (2011)

  13. 13.

    Long, J., Jones, M.: 3d tree modeling using motion capture. In: 2012 IEEE 4th International symposium on plant growth modeling, simulation, visualization and applications (2012)

  14. 14.

    Long, J., Reimschussel, C., Britton, O., Hall, A., Jones, M.: Motion capture for a natural tree in the wind. Proceedings of the Third international conference on Motion in games. MIG’10, pp. 158–169. Springer, Berlin, Heidelberg (2010)

  15. 15.

    Neubert, B., Franken, T., Deussen, O.: Approximate image-based tree-modeling using particle flows. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 papers. ACM, New York, NY, USA (2007)

  16. 16.

    Ota, S., Fujimotoa, T., Tamura, M., Muraoka, K., Fujita, K., Chiba, N.: \(1/f^{\beta }\) noise-based real-time animation of trees swaying in wind fields. In. Computer Graphics International’03, pp. 52–59 (2003)

  17. 17.

    Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., Chiba, N.: A hybrid method for real-time animation of trees swaying in wind fields. Vis. Comput. 20(10), 613–623 (2004)

  18. 18.

    Pfaff, T., Thuerey, N., Cohen, J., Tariq, S., Gross, M.: Scalable fluid simulation using anisotropic turbulence particles. In: ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA ’10, pp. 174:1–174:8. ACM, New York, NY, USA (2010)

  19. 19.

    Pope, S.B.: Turbulent Flows, chap. 10. Cambridge University Press, Cambridge (2000).

  20. 20.

    Runions, A., Lane, B., Prusinkiewicz, P.: Modeling trees with a space colonization algorithm. In: Eurographics Workshop on Natural Phenomena, pp. 63–70 (2007)

  21. 21.

    Selino, A., Jones, M.: Large and small eddies matter: animating trees in wind using coarse fluid simulation and synthetic turbulence. Comput. Graph. Forum 24, 417–425 (2012)

  22. 22.

    Shinya, M., Fournier, A.: Stochastic motion under the influence of wind. In: Eurographics 92, vol. 11, pp. 119–128. Blackwell Publishers, Hoboken, NJ (1992)

  23. 23.

    Simiu, E., Scanlan, R.: Wind effects on structures: fundamentals and applications to design. No. v. 1 in Wiley-Interscience publication. Wiley, Hoboken, NJ (1996)

  24. 24.

    Sun, M., Jepson, A.D., Eugene, F.: Video input driven animation (vida). Proceedings of the Ninth IEEE International Conference on Computer Vision. ICCV ’03, vol. 2, pp. 96–106. IEEE Computer Society, Washington, DC, USA (2003)

  25. 25.

    Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. In: ACM SIGGRAPH 2007 papers, SIGGRAPH ’07. ACM, New York, NY, USA (2007)

  26. 26.

    Wesslen, D., Seipel, S.: Real-time visualization of animated trees. Vis. Comput. 21(6), 397–405 (2005)

Download references

Author information

Correspondence to Michael Jones.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 50546 KB)

Supplementary material 1 (wmv 50546 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Long, J., Porter, B. & Jones, M. Animation of trees in wind using sparse motion capture data. Vis Comput 31, 325–339 (2015) doi:10.1007/s00371-014-0927-4

Download citation


  • Motion capture
  • Animation
  • Natural phenomena