Advertisement

The Visual Computer

, Volume 30, Issue 10, pp 1179–1193 | Cite as

Artistic rendering enhancing global structure

  • Yu-Kun Lai
  • Paul L. Rosin
Original Article
  • 321 Downloads

Abstract

Non-photorealistic rendering techniques usually produce abstracted images. Most existing methods consider local rendering primitives, and global structures may be easily obscured. Inspired by artists, we propose a novel image abstraction method that considers preserving or even enhancing global structures in the input images. Linear structures are particularly considered due to their wide existence and the availability of techniques for their reliable detection. Based on various computer vision techniques, the algorithm is fully automatic. As demonstrated in the paper, artistic looking results are obtained for various types of images. The technique is orthogonal to many non-photorealistic rendering techniques and can be combined with them.

Keywords

Non-photorealistic rendering  Global structure Multiple support Hough transform Deformation Snapping 

References

  1. 1.
    Bhat, P., Zitnick, C.L., Cohen, M., Curless, B.: Gradientshop: a gradient-domain optimization framework for image and video filtering. ACM Trans. Graph. 29(2), 10:1–10:14 (2010)Google Scholar
  2. 2.
    Bischof, W., Caelli, T.: Parsing scale-space and spatial stability analysis. Comput. Vis. Graph. Image Process. 42, 192–205 (1988)CrossRefGoogle Scholar
  3. 3.
    Borgefors, G.: Distance transforms in arbitrary dimensions. Comput. Vis. Graph. Image Process. 27, 321–345 (1984)CrossRefGoogle Scholar
  4. 4.
    Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with temporal coherence and abstraction. In: ACM symposium on non-photorealistic animation and rendering, pp. 141–149 (2006)Google Scholar
  5. 5.
    Bousseau, A., O’Shea, J.P., Durand, F., Ramamoorthi, R., Agrawala, M.: Gloss perception in painterly and cartoon rendering. ACM Trans. Graph. 32(2), 18:1–18:13 (2013)Google Scholar
  6. 6.
    Boyer, K.L., Sarkar, S.: Perceptual organization in computer vision: status, challenges, and potential. Comput. Vis. Image Underst. 76(1), 1–5 (1999)CrossRefGoogle Scholar
  7. 7.
    Cao, Y., Chan, A.B., Lau, R.W.H.: Automatic stylistic manga layout. ACM Trans. Graph. 31(6), 141:1–141:10 (2012)Google Scholar
  8. 8.
    Child, J.: Studio Photography: Essential Skills. Taylor and Francis, UK (2008)Google Scholar
  9. 9.
    Clarke, L., Chen, M., Mora, B.: Automatic generation of 3D caricatures based on artistic deformation styles. IEEE Trans. Vis. Comput. Graph. 17(6), 808–821 (2011)CrossRefGoogle Scholar
  10. 10.
    Collomosse, J.P., Hall, P.M.: Cubist style rendering from photographs. IEEE Trans. Vis. Comput. Graph. 4(9), 443–453 (2003)CrossRefGoogle Scholar
  11. 11.
    Collomosse, J.P., Rowntree, D., Hall, P.M.: Stroke surfaces: temporally coherent non-photorealistic animations from video. IEEE Trans. Vis. Comput. Graph. 11(5), 540–549 (2005)CrossRefGoogle Scholar
  12. 12.
    Cong, L., Tong, R., Dong, J.: Selective image abstraction. Vis. Comput. 27(3), 187–198 (2011)CrossRefGoogle Scholar
  13. 13.
    Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: Proceeding of the computer vision and pattern recognition, pp. 1124–1131 (2005)Google Scholar
  14. 14.
    DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: SIGGRAPH, pp. 769–776 (2002)Google Scholar
  15. 15.
    Gooch, B., Coombe, G., Shirley, P.: Artistic vision: painterly rendering using computer vision techniques. In: ACM symposium on non-photorealistic animation and rendering, pp. 83–90 (2002)Google Scholar
  16. 16.
    Grigorescu, C., Petkov, N., Westenberg, M.: Contour and boundary detection improved by surround suppression of texture edges. Image Vis. Comput. 22(8), 609–622 (2004)CrossRefGoogle Scholar
  17. 17.
    Hausner, A.: Simulating decorative mosaics. In: SIGGRAPH, pp. 573–580 (2001)Google Scholar
  18. 18.
    Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: SIGGRAPH, pp. 453–460 (1998)Google Scholar
  19. 19.
    Hiller, S., Hellwig, H., Deussen, O.: Beyond stippling—methods for distributing objects on the plane. Comput. Graph. Forum 22(3), 515–522 (2003)CrossRefGoogle Scholar
  20. 20.
    Huang, H., Fu, T.N., Li, C.F.: Painterly rendering with content-dependent natural paint strokes. Vis. Comput. 27(9), 861–871 (2011)CrossRefGoogle Scholar
  21. 21.
    Kang, H., Lee, S.: Shape-simplifying image abstraction. Comput. Graph. Forum 27(7), 1773–1780 (2008)CrossRefGoogle Scholar
  22. 22.
    Kolesnikov, A., Fränti, P.: Data reduction of large vector graphics. Pattern Recognit. 38(3), 381–394 (2005)CrossRefMATHGoogle Scholar
  23. 23.
    Kypianidis, J.E., Kang, H.: Image and video abstraction by coherence-enhancing filtering. Comput. Graph. Forum 30(2), 593–602 (2011)CrossRefGoogle Scholar
  24. 24.
    Kyprianidis, J.E., Collomosse, J., Wang, T., Isenberg, T.: State of the “art”: a taxonomy of artistic stylization techniques for images and video. IEEE Trans. Vis. Comput. Graph. 19(5), 866–885 (2013)Google Scholar
  25. 25.
    Li, X.Y., Gu, Y., Hu, S.M., Martin, R.: Mixed-domain edge-aware image manipulation. IEEE Trans. Image Process. 22(5), 1915–1925 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ma, L.Q., Xu, K.: Efficient antialiased edit propagation for images and videos. Comput. Graph. 36(8), 1005–1012 (2012)CrossRefGoogle Scholar
  27. 27.
    Mardia, K.: Statistics of Directional Data. Academic Press, New York (1972)Google Scholar
  28. 28.
    Mould, D.: A stained glass image filter. In: Eurographics workshop on rendering techniques, pp. 20–25 (2003)Google Scholar
  29. 29.
    Nan, L., Sharf, A., Xie, K., Wong, T.T., Deussen, O., Cohen-Or, D., Chen, B.: Conjoining Gestalt rules for abstraction of architectural drawings. ACM Trans. Graph. 30(6), 185 (2011)CrossRefGoogle Scholar
  30. 30.
    Orzan, A., Bousseau, A., Barla, P., Thollot, J.: Structure-preserving manipulation of photographs. In: ACM symposium on non-photorealistic animation and rendering, pp. 103–110 (2007)Google Scholar
  31. 31.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)Google Scholar
  32. 32.
    Paris, S., Hasinoff, S.W., Kautz, J.: Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. ACM Trans. Graph. 30(4), 68:1–68:11 (2011)Google Scholar
  33. 33.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1, 244–256 (1972)CrossRefGoogle Scholar
  34. 34.
    Rosin, P.L., Lai, Y.K.: Artistic minimal rendering with lines and blocks. Graph. Models 75(4), 208–229 (2013)Google Scholar
  35. 35.
    Schaefer, S., McPhail, T., Warren, J.D.: Image deformation using moving least squares. ACM Trans. Graph. 25(3), 533–540 (2006)Google Scholar
  36. 36.
    Son, M., Lee, Y., Kang, H., Lee, S.: Structure grid for directional stippling. Graph. Models 73(3), 74–87 (2011)CrossRefGoogle Scholar
  37. 37.
    Song, Y., Hall, P., Rosin, P.L., Collomosse, J.: Arty shapes. In: Proceeding of the computational aesthetics, pp. 65–73 (2008)Google Scholar
  38. 38.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Thomson-Engineering (2007)Google Scholar
  39. 39.
    Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574–583 (2004)CrossRefGoogle Scholar
  40. 40.
    Wen, F., Luan, Q., Liang, L., Xu, Y.Q., Shum, H.Y.: Color sketch generation. In: ACM symposium on non-photorealistic animation and rendering, pp. 47–54 (2006)Google Scholar
  41. 41.
    Winnemöller, H., Olsen, S., Gooch, B.: Real-time video abstraction. ACM Trans. Graph. 25(3), 1221–1226 (2006)CrossRefGoogle Scholar
  42. 42.
    Xu, J., Kaplan, C.S.: Calligraphic packing. In: Proceeding of the graphics interface, pp. 43–50 (2007)Google Scholar
  43. 43.
    Yang, C.K., Yang, H.L.: Realization of Seurat’s pointillism via non-photorealistic rendering. Vis. Comput. 24(5), 303–322 (2008)CrossRefGoogle Scholar
  44. 44.
    Zhang, J., Hao, Y., Li, L., Sun, D., Yuan, L.: StoryWizard: a framework for fast stylized story illustration. Vis. Comput. 28(6–8), 877–887 (2012)CrossRefGoogle Scholar
  45. 45.
    Zhang, S.H., Li, X.Y., Hu, S.M., Martin, R.R.: Online video stream abstraction and stylization. IEEE Trans. Multimed. 13(6), 1286–1294 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computer Science and InformaticsCardiff UniversityCardiffUK

Personalised recommendations