The Visual Computer

, Volume 30, Issue 12, pp 1373–1393 | Cite as

A survey on information visualization: recent advances and challenges

Original Article

Abstract

Information visualization (InfoVis), the study of transforming data, information, and knowledge into interactive visual representations, is very important to users because it provides mental models of information. The boom in big data analytics has triggered broad use of InfoVis in a variety of domains, ranging from finance to sports to politics. In this paper, we present a comprehensive survey and key insights into this fast-rising area. The research on InfoVis is organized into a taxonomy that contains four main categories, namely empirical methodologies, user interactions, visualization frameworks, and applications, which are each described in terms of their major goals, fundamental principles, recent trends, and state-of-the-art approaches. At the conclusion of this survey, we identify existing technical challenges and propose directions for future research.

Keywords

Information visualization Interactive techniques Large datasets 

References

  1. 1.
    Afzal, S., Maciejewski, R., Jang, Y., Elmqvist, N., Ebert, D.S.: Spatial text visualization using automatic typographic maps. IEEE Trans. Vis. Comput. Graph. 18(12), 2556–2564 (2012)CrossRefGoogle Scholar
  2. 2.
    Albuquerque, G., Lowe, T., Magnor, M.A.: Synthetic generation of high-dimensional datasets. IEEE Trans. Vis. Comput. Graph. 17(12), 2317–2324 (2011)CrossRefGoogle Scholar
  3. 3.
    Alper, B., Höllerer, T., Kuchera-Morin, J., Forbes, A.: Stereoscopic highlighting: 2d graph visualization on stereo displays. IEEE Trans. Vis. Comput. Graph. 17(12), 2325–2333 (2011)CrossRefGoogle Scholar
  4. 4.
    Alper, B., Riche, N.H., Ramos, G., Czerwinski, M.: Design study of linesets, a novel set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12), 2259–2267 (2011)CrossRefGoogle Scholar
  5. 5.
    Alsakran, J., Chen, Y., Luo, D., Zhao, Y., Yang, J., Dou, W., Liu, S.: Real-time visualization of streaming text with a force-based dynamic system. IEEE Comput. Graph. Appl. 32(1), 34–45 (2012)CrossRefGoogle Scholar
  6. 6.
    Alsakran, J., Chen, Y., Zhao, Y., Yang, J., Luo, D.: Streamit: dynamic visualization and interactive exploration of text streams. In: PacificVis, pp. 131–138 (2011)Google Scholar
  7. 7.
    Angus, D., Smith, A., Wiles, J.: Conceptual recurrence plots: revealing patterns in human discourse. IEEE Trans. Vis. Comput. Graph. 18(6), 988–997 (2012)CrossRefGoogle Scholar
  8. 8.
    Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans. Vis. Comput. Graph. 17(4), 539–552 (2011)CrossRefGoogle Scholar
  9. 9.
    Baudel, T., Broeksema, B.: Capturing the design space of sequential space-filling layouts. IEEE Trans. Vis. Comput. Graph. 18(12), 2593–2602 (2012)CrossRefGoogle Scholar
  10. 10.
    Bender-deMoll, S., McFarland, D.A.: The art and science of dynamic network visualization. J. Soc. Struct. 7(2), 1–38 (2006)Google Scholar
  11. 11.
    Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: an overview and systematization. IEEE Trans. Vis. Comput. Graph. 17(12), 2203–2212 (2011)CrossRefGoogle Scholar
  12. 12.
    Bezerianos, A., Isenberg, P.: Perception of visual variables on tiled wall-sized displays for information visualization applications. IEEE Trans. Vis. Comput. Graph. 18(12), 2516–2525 (2012)CrossRefGoogle Scholar
  13. 13.
    Block, F., Horn, M.S., Phillips, B.C., Diamond, J., Evans, E.M., Shen, C.: The deeptree exhibit: visualizing the tree of life to facilitate informal learning. IEEE Trans. Vis. Comput. Graph. 18(12), 2789–2798 (2012)CrossRefGoogle Scholar
  14. 14.
    Borgo, R., Abdul-Rahman, A., Mohamed, F., Grant, P.W., Reppa, I., Floridi, L., Chen, M.: An empirical study on using visual embellishments in visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2759–2768 (2012)CrossRefGoogle Scholar
  15. 15.
    Borkin, M., Gajos, K., Randles, A.P., Mitsouras, D., Melchionna, S., Rybicki, F.J., Feldman, C.L., Pfister, H.: Evaluation of artery visualizations for heart disease diagnosis. IEEE Trans. Vis. Comput. Graph. 17(12), 2479–2488 (2011)CrossRefGoogle Scholar
  16. 16.
    Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. IEEE Trans. Vis. Comput. Graph. 15(6), 1121–1128 (2009)CrossRefGoogle Scholar
  17. 17.
    Bostock, M., Ogievetsky, V., Heer, J.: D\(^3\) data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  18. 18.
    Boukhelifa, N., Bezerianos, A., Isenberg, T., Fekete, J.-D.: Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Trans. Vis. Comput. Graph. 18(12), 2769–2778 (2012)CrossRefGoogle Scholar
  19. 19.
    Brandes, U., Nick, B.: Asymmetric relations in longitudinal social networks. IEEE Trans. Vis. Comput. Graph. 17(12), 2283–2290 (2011)CrossRefGoogle Scholar
  20. 20.
    Burch, M., Konevtsova, N., Heinrich, J., Hoeferlin, M., Weiskopf, D.: Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Trans. Vis. Comput. Graph. 17(12), 2440–2448 (2011)CrossRefGoogle Scholar
  21. 21.
    Cao, N., Gotz, D., Sun, J., Dicon, HQu: Interactive visual analysis of multidimensional clusters. IEEE Trans. Vis. Comput. Graph. 17(12), 2581–2590 (2011)CrossRefGoogle Scholar
  22. 22.
    Cao, N., Lin, Y.-R., Sun, X., Lazer, D., Liu, S., Whisper, HQu: Tracing the spatiotemporal process of information diffusion in real time. IEEE Trans. Vis. Comput. Graph. 18(12), 2649–2658 (2012)CrossRefGoogle Scholar
  23. 23.
    Cao, N., Sun, J., Lin, Y.-R., Gotz, D., Liu, S., Facetatlas, HQu: Multifaceted visualization for rich text corpora. IEEE Trans. Vis. Comput. Graph. 16(6), 1172–1181 (2010)CrossRefGoogle Scholar
  24. 24.
    Caserta, P., Zendra, O.: Visualization of the static aspects of software: a survey. IEEE Trans. Vis. Comput. Graph. 17(7), 913–933 (2011)CrossRefGoogle Scholar
  25. 25.
    Chen, M., Jänicke, H.: An information-theoretic framework for visualization. IEEE Trans. Vis. Comput. Graph. 16(6), 1206–1215 (2010)CrossRefGoogle Scholar
  26. 26.
    Chen, T., Lu, A., Hu, S.-M.: Visual storylines: semantic visualization of movie sequence. Comput. Graphics 36(4), 241–249 (2012)CrossRefGoogle Scholar
  27. 27.
    Chul Kwon, B., Javed, W., Ghani, S., Elmqvist, N., Yi, J.S., Ebert, D.S.: Evaluating the role of time in investigative analysis of document collections. IEEE Trans. Vis. Comput. Graph. 18(11), 1992–2004 (2012)Google Scholar
  28. 28.
    Claessen, J.H.T., van Wijk, J.J.: Flexible linked axes for multivariate data visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2310–2316 (2011)CrossRefGoogle Scholar
  29. 29.
    Correa, C.D., Chan, Y.-H., Ma, K.-L.: A framework for uncertainty-aware visual analytics. In: IEEE VAST, pp. 51–58 (2009)Google Scholar
  30. 30.
    Correa, C.D., Crnovrsanin, T., Ma, K.-L.: Visual reasoning about social networks using centrality sensitivity. IEEE Trans. Vis. Comput. Graph. 18(1), 106–120 (2012)CrossRefGoogle Scholar
  31. 31.
    Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Qu, H., Tong, X.: Textflow: towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 17(12), 2412–2421 (2011)CrossRefGoogle Scholar
  32. 32.
    Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M.X., Context-preserving, HQu: Dynamic word cloud visualization. IEEE Comput. Graph. Appl. 30(6), 42–53 (2010)CrossRefGoogle Scholar
  33. 33.
    Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1277–1284 (2008)CrossRefGoogle Scholar
  34. 34.
    Dasgupta, A., Chen, M., Kosara, R.: Conceptualizing visual uncertainty in parallel coordinates. Comput. Graph. Forum 31(3), 1015–1024 (2012)CrossRefGoogle Scholar
  35. 35.
    Dasgupta, A., Kosara, R.: Adaptive privacy-preserving visualization using parallel coordinates. IEEE Trans. Vis. Comput. Graph. 17(12), 2241–2248 (2011)CrossRefGoogle Scholar
  36. 36.
    Dinkla, K., Westenberg, M.A., van Wijk, J.J.: Compressed adjacency matrices: untangling gene regulatory networks. IEEE Trans. Vis. Comput. Graph. 18(12), 2457–2466 (2012)CrossRefGoogle Scholar
  37. 37.
    Dörk, M., Riche, N.H., Ramos, G., Dumais, S.T.: Pivotpaths: strolling through faceted information spaces. IEEE Trans. Vis. Comput. Graph. 18(12), 2709–2718 (2012)CrossRefGoogle Scholar
  38. 38.
    ElHakim, R., ElHelw, M.: Interactive 3d visualization for wireless sensor networks. Visual Comput. 26(6–8), 1071–1077 (2010)CrossRefGoogle Scholar
  39. 39.
    Elmqvist, N., Dragicevic, P., Fekete, J.-D.: Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans. Vis. Comput. Graph. 14(6), 1148–1539 (2008)Google Scholar
  40. 40.
    Ersoy, O., Hurter, C., Paulovich, F.V., Cantareiro, G., Telea, A.: Skeleton-based edge bundling for graph visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2364–2373 (2011)CrossRefGoogle Scholar
  41. 41.
    Fekete, J.-D.: The infovis toolkit. INFOVIS. 167–174 (2004)Google Scholar
  42. 42.
    Feng, K.-C., Wang, C., Shen, H.-W., Lee, T.-Y.: Coherent time-varying graph drawing with multifocus + context interaction. IEEE Trans. Vis. Comput. Graph. 18(8), 1330–1342 (2012)CrossRefGoogle Scholar
  43. 43.
    Ferreira, N., Lins, L., Fink, D., Kelling, S., Wood, C., Freire, J., Silva, C.: Birdvis: visualizing and understanding bird populations. IEEE Trans. Vis. Comput. Graph. 17(12), 2374–2383 (2011)CrossRefGoogle Scholar
  44. 44.
    Fink, M., Haunert, J.-H., Schulz, A., Spoerhase, J., Wolff, A.: Algorithms for labeling focus regions. IEEE Trans. Vis. Comput. Graph. 18(12), 2583–2592 (2012)CrossRefGoogle Scholar
  45. 45.
    Fisher, D., Drucker, S.M., Fernandez, R., Ruble, S.: Visualizations everywhere: a multiplatform infrastructure for linked visualizations. IEEE Trans. Vis. Comput. Graph. 16(6), 1157–1163 (2010)CrossRefGoogle Scholar
  46. 46.
    Gao, Z., Song, Y., Liu, S., Wang, H., Wei, H., Chen, Y., Cui, W.: Tracking and connecting topics via incremental hierarchical dirichlet processes. In: ICDM, pp. 1056–1061 (2011)Google Scholar
  47. 47.
    Geisler, G.: Making information more accessible: a survey of information visualization applications and techniques. URL: http://www.ils.unc.edu/~geisg/info/infovis/paper.html (1998). Accessed 21 Nov 2003
  48. 48.
    Geng, Z., Peng, Z., Laramee, R.S., Roberts, J.C., Walker, R.: Angular histograms: frequency-based visualizations for large, high dimensional data. IEEE Trans. Vis. Comput. Graph. 17(12), 2572–2580 (2011)CrossRefGoogle Scholar
  49. 49.
    Gomez, S.R., Jianu, R., Ziemkiewicz, C., Guo, H., Laidlaw, D.H.: Different strokes for different folks: visual presentation design between disciplines. IEEE Trans. Vis. Comput. Graph. 18(12), 2411–2420 (2012)CrossRefGoogle Scholar
  50. 50.
    Gou, L., Zhang, X.: Treenetviz: revealing patterns of networks over tree structures. IEEE Trans. Vis. Comput. Graph. 17(12), 2449–2458 (2011)CrossRefGoogle Scholar
  51. 51.
    Hadlak, S., Schulz, H.-J., Schumann, H.: In situ exploration of large dynamic networks. IEEE Trans. Vis. Comput. Graph. 17(12), 2334–2343 (2011)CrossRefGoogle Scholar
  52. 52.
    Haroz, S., Whitney, D.: How capacity limits of attention influence information visualization effectiveness. IEEE Trans. Vis. Comput. Graph. 18(12), 2402–2410 (2012)CrossRefGoogle Scholar
  53. 53.
    Haunert, J.-H., Sering, L.: Drawing road networks with focus regions. IEEE Trans. Vis. Comput. Graph. 17(12), 2555–2562 (2011)CrossRefGoogle Scholar
  54. 54.
    Havre, S., Hetzler, E., Whitney, P., Nowell, L.: Themeriver: visualizing thematic changes in large document collections. IEEE Trans. Vis. Comput. Graph. 8(1), 9–20 (2002)CrossRefGoogle Scholar
  55. 55.
    Healey, C.G., Dennis, B.M.: Interest driven navigation in visualization. IEEE Trans. Vis. Comput. Graph. 18(10), 1744–1756 (2012)CrossRefGoogle Scholar
  56. 56.
    Heer, J., Bostock, M.: Declarative language design for interactive visualization. IEEE Trans. Vis. Comput. Graph. 16(6), 1149–1156 (2010)CrossRefGoogle Scholar
  57. 57.
    Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization. In: CHI, pp. 421–430 (2005)Google Scholar
  58. 58.
    Heimerl, F., Koch, S., Bosch, H., Ertl, T.: Visual classifier training for text document retrieval. IEEE Trans. Vis. Comput. Graph. 18(12), 2839–2848 (2012)CrossRefGoogle Scholar
  59. 59.
    Heine, C., Schneider, D., Carr, H., Scheuermann, G.: Drawing contour trees in the plane. IEEE Trans. Vis. Comput. Graph. 17(11), 1599–1611 (2011)CrossRefGoogle Scholar
  60. 60.
    Hofmann, H., Follett, L., Majumder, M., Cook, D.: Graphical tests for power comparison of competing designs. IEEE Trans. Vis. Comput. Graph. 18(12), 2441–2448 (2012)CrossRefGoogle Scholar
  61. 61.
    Holme, P., Huss, M.: Understanding and exploiting information spreading and integrating technologies. J. Comput. Sci. Technol. 26(5), 829–836 (2011)CrossRefGoogle Scholar
  62. 62.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983–990 (2009)CrossRefGoogle Scholar
  63. 63.
    Hsiao, J.P.-L., Healey, C.G.: Visualizing combinatorial auctions. Visual Comput. 27(6–8), 633–643 (2011)CrossRefGoogle Scholar
  64. 64.
    Hu, M., Liu, S., Wei, F., Wu, Y., Stasko, J.T., Ma, K.-L.: Breaking news on twitter. In: CHI, pp. 2751–2754 (2012)Google Scholar
  65. 65.
    Hullman, J., Adar, E., Shah, P.: Benefitting infovis with visual difficulties. IEEE Trans. Vis. Comput. Graph. 17(12), 2213–2222 (2011)CrossRefGoogle Scholar
  66. 66.
    Hullman, J., Diakopoulos, N.: Visualization rhetoric: framing effects in narrative visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2231–2240 (2011)CrossRefGoogle Scholar
  67. 67.
    Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation. Comput. Graph. Forum 31(3), 865–874 (2012)CrossRefGoogle Scholar
  68. 68.
    Hurter, C., Telea, A., Ersoy, O.: Moleview: an attribute and structure-based semantic lens for large element-based plots. IEEE Trans. Vis. Comput. Graph. 17(12), 2600–2609 (2011)CrossRefGoogle Scholar
  69. 69.
    Isenberg, P., Bezerianos, A., Dragicevic, P., Fekete, J.-D.: A study on dual-scale data charts. IEEE Trans. Vis. Comput. Graph. 17(12), 2469–2478 (2011)CrossRefGoogle Scholar
  70. 70.
    Isenberg, P., Fisher, D., Paul, S.A., Morris, M.R., Inkpen, K., Czerwinski, M.: Co-located collaborative visual analytics around a tabletop display. IEEE Trans. Vis. Comput. Graph. 18(5), 689–702 (2012)CrossRefGoogle Scholar
  71. 71.
    Jenny, B.: Adaptive composite map projections. IEEE Trans. Vis. Comput. Graph. 18(12), 2575–2582 (2012)CrossRefGoogle Scholar
  72. 72.
    Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine multidimensional projection. IEEE Trans. Vis. Comput. Graph. 17(12), 2563–2571 (2011)CrossRefGoogle Scholar
  73. 73.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Keim, D.A., Kriegel, H.-P.: Visualization techniques for mining large databases: a comparison. IEEE Trans. Knowl. Data. Eng. 8(6), 923–938 (1996)CrossRefGoogle Scholar
  75. 75.
    Keim, D.A., Mansmann, F., Schneidewind, J., Ziegler, H.L.: Challenges in visual data analysis. In: IV, pp. 9–16 (2006)Google Scholar
  76. 76.
    Keim, D.A., Oelke, D.: Literature fingerprinting: a new method for visual literary analysis. In: IEEE VAST, pp. 115–122 (2007)Google Scholar
  77. 77.
    Khoury, M., Hu, Y., Krishnan, S., Scheidegger, C.E.: Drawing large graphs by low-rank stress majorization. Comput. Graph. Forum 31(3), 975–984 (2012)CrossRefGoogle Scholar
  78. 78.
    Kim, S.-H., Dong, Z., Xian, H., Upatising, B., Yi, J.S.: Does an eye tracker tell the truth about visualizations?: findings while investigating visualizations for decision making. IEEE Trans. Vis. Comput. Graph. 18(12), 2421–2430 (2012)Google Scholar
  79. 79.
    Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with mechanical turk. In: CHI, pp. 453–456 (2008)Google Scholar
  80. 80.
    Ko, S., Maciejewski, R., Jang, Y., Ebert, D.S.: Marketanalyzer: an interactive visual analytics system for analyzing competitive advantage using point of sale data. Comput. Graph. Forum 31(3), 1245–1254 (2012)CrossRefGoogle Scholar
  81. 81.
    Koh, K., Lee, B., Kim, B., Seo, J.: Maniwordle: providing flexible control over wordle. IEEE Trans. Vis. Comput. Graph. 16(6), 1190–1197 (2010)CrossRefGoogle Scholar
  82. 82.
    Kong, N., Agrawala, M.: Graphical overlays: using layered elements to aid chart reading. IEEE Trans. Vis. Comput. Graph. 18(12), 2631–2638 (2012)CrossRefGoogle Scholar
  83. 83.
    Krstajic, M., Bertini, E., Keim, D.A.: Cloudlines: compact display of event episodes in multiple time-series. IEEE Trans. Vis. Comput. Graph. 17(12), 2432–2439 (2011)CrossRefGoogle Scholar
  84. 84.
    Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies in information visualization: seven scenarios. IEEE Trans. Vis. Comput. Graph. 18(9), 1520–1536 (2012)CrossRefGoogle Scholar
  85. 85.
    Landge, A.G., Levine, J.A., Bhatele, A., Isaacs, K.E., Gamblin, T., Schulz, M., Langer, S.H., Bremer, P.-T., Pascucci, V.: Visualizing network traffic to understand the performance of massively parallel simulations. IEEE Trans. Vis. Comput. Graph. 18(12), 2467–2476 (2012)CrossRefGoogle Scholar
  86. 86.
    Lee, B., Riche, N.H., Karlson, A.K., Carpendale, S.: Sparkclouds: visualizing trends in tag clouds. IEEE Trans. Vis. Comput. Graph. 16(6), 1182–1189 (2010)CrossRefGoogle Scholar
  87. 87.
    Lee, H., Kihm, J., Choo, J., Stasko, J.T., Park, H.: Ivisclustering: an interactive visual document clustering via topic modeling. Comput. Graph. Forum 31(3), 1155–1164 (2012)CrossRefGoogle Scholar
  88. 88.
    Lee, J.H., McDonnell, K.T., Zelenyuk, A., Imre, D., Mueller, K.: A structure-based distance metric for high-dimensional space exploration with multi-dimensional scaling. IEEE Trans. Vis. Comput. Graph. (2013) (To appear)Google Scholar
  89. 89.
    Lex, A., Schulz, H.-J., Streit, M., Partl, C., Schmalstieg, D.: Visbricks: multiform visualization of large, inhomogeneous data. IEEE Trans. Vis. Comput. Graph. 17(12), 2291–2300 (2011)CrossRefGoogle Scholar
  90. 90.
    Liu, S., Cao, N., Lv, H.: Interactive visual analysis of the nsf funding information. In: PacificVis, pp. 183–190 (2008)Google Scholar
  91. 91.
    Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: Storyflow: tracking the evolution of stories. IEEE Trans. Vis. Comput. Graph. 19(12) (2013)Google Scholar
  92. 92.
    Liu, S., Zhou, M.X., Pan, S., Qian, W., Cai, W., Lian, X.: Interactive, topic-based visual text summarization and analysis. In: CIKM, pp. 543–552. (2009)Google Scholar
  93. 93.
    Liu, S., Zhou, M.X., Pan, S., Song, Y., Qian, W., Cai, W., Lian, X.: Tiara: interactive, topic-based visual text summarization and analysis. ACM Trans. Intell. Syst. Technol. 3(2), 25:1–25:28 (2012)Google Scholar
  94. 94.
    Liu, Z., Kihm, J., Choo, J., Park, H., Stasko, J., et al.: Combining computational analyses and interactive visualization for document exploration and sensemaking in jigsaw. IEEE Trans. Vis. Comput. Graph. (2013)Google Scholar
  95. 95.
    Lloyd, D., Dykes, J.: Human-centered approaches in geovisualization design: investigating multiple methods through a long-term case study. IEEE Trans. Vis. Comput. Graph. 17(12), 2498–2507 (2011)CrossRefGoogle Scholar
  96. 96.
    Luo, D., Yang, J., Krstajic, M., Ribarsky, W., Keim, D.A.: Eventriver: visually exploring text collections with temporal references. IEEE Trans. Vis. Comput. Graph. 18(1), 93–105 (2012)CrossRefGoogle Scholar
  97. 97.
    Ma, J., Liao, I., Ma, K.-L., Frazier, J.: Living liquid: design and evaluation of an exploratory visualization tool for museum visitors. IEEE Trans. Vis. Comput. Graph. 18(12), 2799–2808 (2012)CrossRefGoogle Scholar
  98. 98.
    MacEachren, A.M., Roth, R.E., O’Brien, J., Li, B., Swingley, D., Gahegan, M.: Visual semiotics and uncertainty visualization: an empirical study. IEEE Trans. Vis. Comput. Graph. 18(12), 2496–2505 (2012)CrossRefGoogle Scholar
  99. 99.
    Maciejewski, R., Hafen, R., Rudolph, S., Larew, S.G., Mitchell, M.A., Cleveland, W.S., Ebert, D.S.: Forecasting hotspotsa predictive analytics approach. IEEE Trans. Vis. Comput. Graph. 17(4), 440–453 (2011)CrossRefGoogle Scholar
  100. 100.
    Maguire, E., Rocca-Serra, P., Sansone, S.-A., Davies, J., Chen, M.: Taxonomy-based glyph design—with a case study on visualizing workflows of biological experiments. IEEE Trans. Vis. Comput. Graph. 18(12), 2603–2612 (2012)CrossRefGoogle Scholar
  101. 101.
    Marriott, K., Purchase, H.C., Wybrow, M., Goncu, C.: Memorability of visual features in network diagrams. IEEE Trans. Vis. Comput. Graph. 18(12), 2477–2485 (2012)CrossRefGoogle Scholar
  102. 102.
    Mashima, D., Kobourov, S.G., Hu, Y.: Visualizing dynamic data with maps. IEEE Trans. Vis. Comput. Graph. 18(9), 1424–1437 (2012)CrossRefGoogle Scholar
  103. 103.
    Micallef, L., Dragicevic, P., Fekete, J.-D.: Assessing the effect of visualizations on bayesian reasoning through crowdsourcing. IEEE Trans. Vis. Comput. Graph. 18(12), 2536–2545 (2012)CrossRefGoogle Scholar
  104. 104.
    Moere, A.V., Tomitsch, M., Wimmer, C., Bösch, C., Grechenig, T.: Evaluating the effect of style in information visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2739–2748 (2012)CrossRefGoogle Scholar
  105. 105.
    Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L., Zhou, Y.: Treejuxtaposer: scalable tree comparison using focus+context with guaranteed visibility. ACM Trans. Graph. 22(3), 453–462 (2003)CrossRefGoogle Scholar
  106. 106.
    Nocaj, A., Brandes, U.: Organizing search results with a reference map. IEEE Trans. Vis. Comput. Graph. 18(12), 2546–2555 (2012)CrossRefGoogle Scholar
  107. 107.
    Oelke, D., Spretke, D., Stoffel, A., Keim, D.A.: Visual readability analysis: how to make your writings easier to read. IEEE Trans. Vis. Comput. Graph. 18(5), 662–674 (2012)CrossRefGoogle Scholar
  108. 108.
    Oesterling, P., Heine, C., Jänicke, H., Scheuermann, G., Heyer, G.: Visualization of high-dimensional point clouds using their density distribution’s topology. IEEE Trans. Vis. Comput. Graph. 17(11), 1547–1559 (2011)CrossRefGoogle Scholar
  109. 109.
    Paiva, J.G., Florian, L., Pedrini, H., Telles, G., Minghim, R.: Improved similarity trees and their application to visual data classification. IEEE Trans. Vis. Comput. Graph. 17(12), 2459–2468 (2011)CrossRefGoogle Scholar
  110. 110.
    Paulovich, F.V., Minghim, R.: Hipp: a novel hierarchical point placement strategy and its application to the exploration of document collections. IEEE Trans. Vis. Comput. Graph. 14(6), 1229–1236 (2008)CrossRefGoogle Scholar
  111. 111.
    Pileggi, H., Stolper, C.D., Boyle, J.M., Stasko, J.T.: Snapshot: visualization to propel ice hockey analytics. IEEE Trans. Vis. Comput. Graph. 18(12), 2819–2828 (2012)CrossRefGoogle Scholar
  112. 112.
    Pilhofer, A., Gribov, A., Unwin, A.: Comparing clusterings using bertin’s idea. IEEE Trans. Vis. Comput. Graph. 18(12), 2506–2515 (2012)CrossRefGoogle Scholar
  113. 113.
    Plaisant, C.: The challenge of information visualization evaluation. In: AVI, pp. 109–116 (2004)Google Scholar
  114. 114.
    Pretorius, A.J., Bray, M.-A., Carpenter, A.E., Ruddle, R.A.: Visualization of parameter space for image analysis. IEEE Trans. Vis. Comput. Graph. 17(12), 2402–2411 (2011)CrossRefGoogle Scholar
  115. 115.
    Purchase, H.C., Pilcher, C., Plimmer, B.: Graph drawing aesthetics—created by users, not algorithms. IEEE Trans. Vis. Comput. Graph. 18(1), 81–92 (2012)CrossRefGoogle Scholar
  116. 116.
    Rodgers, J., Bartram, L.: Exploring ambient and artistic visualization for residential energy use feedback. IEEE Trans. Vis. Comput. Graph. 17(12), 2489–2497 (2011)CrossRefGoogle Scholar
  117. 117.
    Scheepens, R., Willems, N., van de Wetering, H., Andrienko, G.L., Andrienko, N.V., van Wijk, J.J.: Composite density maps for multivariate trajectories. IEEE Trans. Vis. Comput. Graph. 17(12), 2518–2527 (2011)CrossRefGoogle Scholar
  118. 118.
    Sedlmair, M., Frank, A., Munzner, T., Butz, A.: Relex: visualization for actively changing overlay network specifications. IEEE Trans. Vis. Comput. Graph. 18(12), 2729–2738 (2012)CrossRefGoogle Scholar
  119. 119.
    Sedlmair, M., Meyer, M.D., Munzner, T.: Design study methodology: reflections from the trenches and the stacks. IEEE Trans. Vis. Comput. Graph. 18(12), 2431–2440 (2012)CrossRefGoogle Scholar
  120. 120.
    Selassie, D., Heller, B., Heer, J.: Divided edge bundling for directional network data. IEEE Trans. Vis. Comput. Graph. 17(12), 2354–2363 (2011)CrossRefGoogle Scholar
  121. 121.
    Shi, C., Cui, W., Liu, S., Xu, P., Chen, W., Rankexplorer, H.Q.: Visualization of ranking changes in large time series data. IEEE Trans. Vis. Comput. Graph. 18(12), 2669–2678 (2012)CrossRefGoogle Scholar
  122. 122.
    Shi, L., Cao, N., Liu, S., Qian, W., Tan, L., Wang, G., Sun, J., Lin, C.-Y.: Himap: adaptive visualization of large-scale online social networks. In: PacificVis pp. 41–48 (2009)Google Scholar
  123. 123.
    Shi, L., Wei, F., Liu, S., Tan, L., Lian, X., Zhou, M.X.: Understanding text corpora with multiple facets. In: IEEE VAST, pp. 99–106 (2010)Google Scholar
  124. 124.
    Shiravi, H., Shiravi, A., Ghorbani, A.A.: A survey of visualization systems for network security. IEEE Trans. Vis. Comput. Graph. 18(8), 1313–1329 (2012)CrossRefGoogle Scholar
  125. 125.
    Slingsby, A., Dykes, J., Wood, J.: Exploring uncertainty in geodemographics with interactive graphics. IEEE Trans. Vis. Comput. Graph. 17(12), 2545–2554 (2011)CrossRefGoogle Scholar
  126. 126.
    Song, Y., Pan, S., Liu, S., Wei, F., Zhou, M.X., Qian, W.: Constrained coclustering for textual documents. In: AAAI (2010)Google Scholar
  127. 127.
    Song, Y., Pan, S., Liu, S., Wei, F., Zhou, M.X., Qian, W.: Constrained text coclustering with supervised and unsupervised constraints. IEEE Trans. Knowl. Data Eng. 25(6), 1227–1239 (2013)CrossRefGoogle Scholar
  128. 128.
    Steinberger, M., Waldner, M., Streit, M., Lex, A., Schmalstieg, D.: Context-preserving visual links. IEEE Trans. Vis. Comput. Graph. 17(12), 2249–2258 (2011)CrossRefGoogle Scholar
  129. 129.
    Streit, M., Schulz, H.-J., Lex, A., Schmalstieg, D., Schumann, H.: Model-driven design for the visual analysis of heterogeneous data. IEEE Trans. Vis. Comput. Graph. 18(6), 998–1010 (2012)CrossRefGoogle Scholar
  130. 130.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man. Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  131. 131.
    Talbot, J., Gerth, J., Hanrahan, P.: An empirical model of slope ratio comparisons. IEEE Trans. Vis. Comput. Graph. 18(12), 2613–2620 (2012)CrossRefGoogle Scholar
  132. 132.
    Tan, L., Song, Y., Liu, S., Xie, L.: Imagehive: interactive content-aware image summarization. IEEE Comput. Graph. Appl. 32(1), 46–55 (2012)CrossRefGoogle Scholar
  133. 133.
    Tanahashi, Y., Ma, K.-L.: Design considerations for optimizing storyline visualizations. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012)CrossRefGoogle Scholar
  134. 134.
    Tatu, A., Albuquerque, G., Eisemann, M., Bak, P., Theisel, H., Magnor, M.A., Keim, D.A.: Automated analytical methods to support visual exploration of high-dimensional data. IEEE Trans. Vis. Comput. Graph. 17(5), 584–597 (2011)CrossRefGoogle Scholar
  135. 135.
    Tominski, C., Forsell, C., Johansson, J.: Interaction support for visual comparison inspired by natural behavior. IEEE Trans. Vis. Comput. Graph. 18(12), 2719–2728 (2012)CrossRefGoogle Scholar
  136. 136.
    Tominski, C., Schumann, H., Andrienko, G.L., Andrienko, N.V.: Stacking-based visualization of trajectory attribute data. IEEE Trans. Vis. Comput. Graph. 18(12), 2565–2574 (2012)CrossRefGoogle Scholar
  137. 137.
    Trimm, D., Rheingans, P., desJardins, M.: Visualizing student histories using clustering and composition. IEEE Trans. Vis. Comput. Graph. 18(12):2809–2818 (2012)Google Scholar
  138. 138.
    Tu, Y., Shen, H.-W.: Balloon focus: a seamless multi-focus + context method for treemaps. IEEE Trans. Vis. Comput. Graph. 14(6), 1157–1164 (2008)CrossRefGoogle Scholar
  139. 139.
    Turkay, C., Filzmoser, P., Hauser, H.: Brushing dimensions—a dual visual analysis model for high-dimensional data. IEEE Trans. Vis. Comput. Graph. 17(12), 2591–2599 (2011)CrossRefGoogle Scholar
  140. 140.
    Turkay, C., Lundervold, A., Lundervold, A.J., Hauser, H.: Representative factor generation for the interactive visual analysis of high-dimensional data. IEEE Trans. Vis. Comput. Graph. 18(12), 2621–2630 (2012)CrossRefGoogle Scholar
  141. 141.
    Twitter statistics: http://en.wikipedia.org/wiki/Twitter. Accessed Aug 2013
  142. 142.
    Van Ham, F., Wattenberg, M., Viégas, F.B.: Mapping text with phrase nets. IEEE Trans. Vis. Comput. Graph. 15(6), 1169–1176 (2009)CrossRefGoogle Scholar
  143. 143.
    van Zudilova-Seinstra, E., Adriaansen, T., Van Liere, R.: Trends in interactive visualization: state-of-the-art survey. Springer (2009)Google Scholar
  144. 144.
    Verbeek, K., Buchin, K., Speckmann, B.: Flow map layout via spiral trees. IEEE Trans. Vis. Comput. Graph. 17(12), 2536–2544 (2011)CrossRefGoogle Scholar
  145. 145.
    Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.J., Fekete, J.-D., Fellner, D.W.: Visual analysis of large graphs: State-of-the-art and future research challenges. Comput. Graph. Forum 30(6), 1719–1749 (2011)CrossRefGoogle Scholar
  146. 146.
    Walny, J., Carpendale, M.S.T., Riche, N.H., Venolia, G., Fawcett, P.: Visual thinking in action: Visualizations as used on whiteboards. IEEE Trans. Vis. Comput. Graph. 17(12), 2508–2517 (2011)CrossRefGoogle Scholar
  147. 147.
    Walny, J., Lee, B., Johns, P., Riche, N.H., Carpendale, S.: Understanding pen and touch interaction for data exploration on interactive whiteboards. IEEE Trans. Vis. Comput. Graph. 18(12), 2779–2788 (2012)CrossRefGoogle Scholar
  148. 148.
    Wang, Y.-S., Chi, M.-T.: Focus + context metro maps. IEEE Trans. Vis. Comput. Graph. 17(12), 2528–2535 (2011)CrossRefGoogle Scholar
  149. 149.
    Wattenberg, M., Viégas, F.B.: The word tree, an interactive visual concordance. IEEE Trans. Vis. Comput. Graph. 14(6), 1221–1228 (2008)CrossRefGoogle Scholar
  150. 150.
    Weaver, C.: Building highly-coordinated visualizations in improvise. In: INFOVIS, pp. 159–166 (2004)Google Scholar
  151. 151.
    Wehrend, S., Lewis, C.: A problem-oriented classification of visualization techniques. In: IEEE Visualization, pp. 139–143 (1990)Google Scholar
  152. 152.
    Wei, F., Liu, S., Song, Y., Pan, S., Zhou, M.X., Qian, W., Shi, L., Tan, L., Zhang, Q.: Tiara: a visual exploratory text analytic system. In: KDD, pp. 153–162 (2010)Google Scholar
  153. 153.
    Wickham, H., Hofmann, H.: Product plots. IEEE Trans. Vis. Comput. Graph. 17(12), 2223–2230 (2011)CrossRefGoogle Scholar
  154. 154.
    Wongsuphasawat, K., Gotz, D.: Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2659–2668 (2012)CrossRefGoogle Scholar
  155. 155.
    Wood, J., Badawood, D., Dykes, J., Slingsby, A.: Ballotmaps: Detecting name bias in alphabetically ordered ballot papers. IEEE Trans. Vis. Comput. Graph. 17(12), 2384–2391 (2011)CrossRefGoogle Scholar
  156. 156.
    Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N., Slingsby, A.: Sketchy rendering for information visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2749–2758 (2012)CrossRefGoogle Scholar
  157. 157.
    Wood, M.: Visualization in historical context. In: Visualization in Modern Cartography, pp. 13–26. Pergamon, Greath Yarmouth (1994)Google Scholar
  158. 158.
    Wu, Y., Liu, X., Liu, S., Ma, K.-L.: ViSizer: a visualization resizing framework. IEEE Trans. Vis. Comput. Graph. 19(2), 278–290 (2013)CrossRefGoogle Scholar
  159. 159.
    Wu, Y., Provan, T., Wei, F., Liu, S., Ma, K.-L.: Semantic-preserving word clouds by seam carving. Comput. Graph. Forum 30(3), 741–750 (2011)CrossRefGoogle Scholar
  160. 160.
    Wu, Y., Wei, F., Liu, S., Au, N., Cui, W., Zhou, H., Qu, H.: OpinionSeer: Interactive visualization of hotel customer feedback. IEEE Trans. Vis. Comput. Graph. 16(6), 1109–1118 (2010)Google Scholar
  161. 161.
    Wu, Y., Yuan, G.-X., Ma, K.-L.: Visualizing flow of uncertainty through analytical processes. IEEE Trans. Vis. Comput. Graph. 18(12), 2526–2535 (2012)CrossRefGoogle Scholar
  162. 162.
    Xu, K., Rooney, C., Passmore, P., Ham, D.-H., Nguyen, P.H.: A user study on curved edges in graph visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2449–2456 (2012)CrossRefGoogle Scholar
  163. 163.
    Xu, P., Wu, Y., Wei, E., Peng, T., Liu, S., Zhu, J., Qu, H.: Visual analysis of topic competition on social media. IEEE Trans. Vis. Comput. Graph. 19(12), 93–105 (2013)Google Scholar
  164. 164.
    Yang, J., Liu, Y., Zhang, X., Yuan, X., Zhao, Y., Barlowe, S., Liu, S.: Piwi: visually exploring graphs based on their community structure. IEEE Trans. Vis. Comput. Graph. 19(6), 1034–1047 (2013)CrossRefGoogle Scholar
  165. 165.
    Yee, K.-P., Fisher, D., Dhamija, R., Hearst, M.A.: Animated exploration of dynamic graphs with radial layout. In: INFOVIS, pp. 43–50 (2001) Google Scholar
  166. 166.
    Yi, J.S., Kang, Y-a, Stasko, J.T., Jacko, J.A.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1224–1231 (2007)CrossRefGoogle Scholar
  167. 167.
    Yuan, X., Che, L., Hu, Y., Zhang, X.: Intelligent graph layout using many users’ input. IEEE Trans. Vis. Comput. Graph. 18(12), 2699–2708 (2012)CrossRefGoogle Scholar
  168. 168.
    Zhang, J., Song, Y., Zhang, C., Liu, S.: Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora. In: KDD, pp. 1079–1088. (2010)Google Scholar
  169. 169.
    Zhao, J., Chevalier, F., Collins, C., Balakrishnan, R.: Facilitating discourse analysis with interactive visualization. IEEE Trans. Vis. Comput. Graph. 18(12), 2639–2648 (2012)CrossRefGoogle Scholar
  170. 170.
    Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail rendering of large graphs. IEEE Trans. Vis. Comput. Graph. 18(12), 2486–2495 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shixia Liu
    • 1
  • Weiwei Cui
    • 1
  • Yingcai Wu
    • 1
  • Mengchen Liu
    • 1
  1. 1.Microsoft Research AsiaBeijingChina

Personalised recommendations