Advertisement

The Visual Computer

, Volume 30, Issue 12, pp 1347–1358 | Cite as

Constrained quadratic errors-in-variables fitting

  • Levente Hunyadi
  • István Vajk
Original Article

Abstract

We propose an estimation method to fit conics and quadrics to data in the context of errors-in-variables where the fit is subject to constraints. The proposed algorithm is based on algebraic distance minimization and consists of solving a few generalized eigenvalue (or singular value) problems and is not iterative. Nonetheless, the algorithm produces accurate estimates, close to those obtained with maximum likelihood, while the constraints are also guaranteed to be satisfied. Important special cases, fitting ellipses, hyperbolas, parabolas, and ellipsoids to noisy data are discussed.

Keywords

Parameter estimation Direct methods Fitting with constraints Eigenvalue problem 

Notes

Acknowledgements

We are grateful to the anonymous reviewers for their helpful comments. This work was supported by the fund of the Hungarian Academy of Sciences for control research, and partially by the European Union and the European Social Fund through project FuturICT.hu organized by VIKING Zrt. Balatonfüred (grant no. TÁMOP-4.2.2.C-11/1/KONV-2012-0013), and by the Hungarian Government via the National Development Agency financed by the Research and Technology Innovation Fund (grant no. KMR-12-1-2012-0441).

References

  1. 1.
    Al-Sharadqah, A., Chernov, N.: A doubly optimal ellipse fit. Comput. Stat. Data Anal. 56(9), 2771–2781 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algorithms. Comput. Stat. Data Anal. 47(4), 713–728 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chernov, N., Ma, H.: Least squares fitting of quadratic curves and surfaces. In: Yoshida, S.R. (ed.) Computer Vision, pp. 285–302. Nova Publ. (Nova Science Publishers), New York (2011) Google Scholar
  4. 4.
    Chojnacki, W., Brooks, M.J.: Revisiting Hartley’s normalized eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1172–1177 (2003) CrossRefGoogle Scholar
  5. 5.
    Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: FNS, CFNS and HEIV: A unifying approach. J. Math. Imaging Vis. 23(2), 175–183 (2005) CrossRefGoogle Scholar
  6. 6.
    Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999) CrossRefGoogle Scholar
  7. 7.
    Halíř, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Skala, V. (ed.) Proc. of International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media, pp. 125–132 (1998) Google Scholar
  8. 8.
    Harker, M., O’Leary, P., Zsombor-Murray, P.: Direct type-specific conic fitting and eigenvalue bias correction. Image Vis. Comput. 26(3), 372–381 (2008) CrossRefGoogle Scholar
  9. 9.
    Hunyadi, L., Vajk, I.: Identifying unstructured systems in the errors-in-variables context. In: Proc. of the 18th World Congress of the International Federation of Automatic Control, pp. 13104–13109 (2011) Google Scholar
  10. 10.
    Hunyadi, L., Vajk, I.: Modeling by fitting a union of polynomial functions to data. Int. J. Pattern Recogn. Artif. Intell. 27(2) (2013). Article ID 1350004 Google Scholar
  11. 11.
    Kenichi, K.: Further improving geometric fitting. In: Proc. of 5th International Conference on 3-D Digital Imaging and Modeling, Ottawa, Ontario, Canada, pp. 2–13 (2005) Google Scholar
  12. 12.
    Kenichi, K.: Statistical optimization for geometric fitting: theoretical accuracy bound and high order error analysis. Int. J. Comput. Vis. 80(2), 167–188 (2008) CrossRefGoogle Scholar
  13. 13.
    Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kukush, A.G., Markovsky, I., Van Huffel, S.: Consistent estimation in an implicit quadratic measurement error model. Comput. Stat. Data Anal. 47(1), 123–147 (2004) CrossRefzbMATHGoogle Scholar
  15. 15.
    Li, Q., Griffiths, J.G.: Least squares ellipsoid specific fitting. In: Proc. of Geometric Modeling and Processing, pp. 335–340 (2004) Google Scholar
  16. 16.
    Markovsky, I., Kukush, A.G., Van Huffel, S.: Consistent least squares fitting of ellipsoids. Numer. Math. 98(1), 177–194 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bogdan, M., Meer, P.: A general method for errors-in-variables problems in computer vision. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 18–25 (2000) Google Scholar
  18. 18.
    O’Leary, P., Zsombor-Murray, P.J.: Direct and specific least-square fitting of hyperbolæ and ellipses. J. Electron. Imaging 13(3), 492–503 (2004) CrossRefGoogle Scholar
  19. 19.
    Schöne, R., Hanning, T.: Least squares problems with absolute quadratic constraints. J. Appl. Math. 2012. Article ID 312985 Google Scholar
  20. 20.
    Taubin, G.: Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991) CrossRefGoogle Scholar
  21. 21.
    Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Vajk, I., Hetthéssy, J.: Identification of nonlinear errors-in-variables models. Automatica 39, 2099–2107 (2003) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Automation and Applied InformaticsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Automation and Applied Informatics, MTA-BME Control Research GroupBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations