The Visual Computer

, Volume 30, Issue 12, pp 1321–1331 | Cite as

Dual joints for 3D-structures

Producing skins for skeletons by exploring duality
  • Asla Medeiros e Sá
  • Karina Rodriguez Echavarria
  • David Arnold
Original Article

Abstract

The increasing popularity of 3D printing is drawing the interest of the research community to the possibilities and challenges of this manufacturing method. Amongst its many uncertainties, we are concerned here with one of its certainties—that reduction of the material required in 3D printing is critical for efficiency and affordability. In this paper, we propose a solution to the computer graphics problem of, given a volume boundary, automatically defining the mesh of a low density internal structure that is 3D-printable. The proposed solution involves two steps. The first step is to define a cell complex partition for the internal space of a volume defined by its boundaries. The second step, is to apply the Skin4Skeleton algorithm, which uses the cell complex dual to produce a 3D-printable cell-complex mesh with a parametrised thickness.

Keywords

Cell complexes Additive manufacturing Low density structures 

References

  1. 1.
    Sá, A.M., Echavarria, K.R., Griffin, M., Covill, D., Kaminski, J., Arnold, D.: Parametric 3D-fitted frames for packaging heritage artefacts. In: VAST: International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage, 2012, Brighton, UK. pp. 105–112. Eurographics Associassion, Brighton (2012) Google Scholar
  2. 2.
    Bitzer, T.: Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing. Chapman & Hall, London (1997) CrossRefGoogle Scholar
  3. 3.
    Chen, Y.: A mesh-based geometric modeling method for general structures. ASME Conf. Proc. 2006(42578), 269–281 (2006) Google Scholar
  4. 4.
    Christensen, R.M.: Mechanics of cellular and other low-density materials. Int. J. Solids Struct. 37(1–2), 93–104 (2000) CrossRefMATHGoogle Scholar
  5. 5.
    Conway, J.H., Jiao, Y., Torquato, S.: New family of tilings of three-dimensional euclidean space by tetrahedra and octahedra. Proc. Natl. Acad. Sci. 108(27), 11009–11012 (2011) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49(8), 1747–1769 (2001) CrossRefMATHGoogle Scholar
  7. 7.
    Freedom of creation (2013). http://www.freedomofcreation.com
  8. 8.
    Friedrichs, O.D., Huson, D.H.: Tiling space by platonic solids, I. Discrete Comput. Geom. 21(2), 299–315 (1999) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, Berlin (2009) Google Scholar
  10. 10.
    Greiner, G., Grosso, R.: Hierarchical tetrahedral-octahedral subdivision for volume visualization. Vis. Comput. 16, 357–369 (2000) CrossRefMATHGoogle Scholar
  11. 11.
    Hutmacher, D.W., Sittinger, M., Risbud, M.V.: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22(7), 354–362 (2004) CrossRefGoogle Scholar
  12. 12.
    Kang, H., Lin, C.-Y., Hollister, S.J.: Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct. Multidiscip. Optim. 42, 633–644 (2010) CrossRefGoogle Scholar
  13. 13.
    Kawamoto, A.: Prototyping lightweight car seat structures using topology optimization and additive manufacturing. In: Additive Manufacturing Conference Proceedings (2012) Google Scholar
  14. 14.
    Kowalski, N., Ledoux, F., Staten, M.L., Owen, S.J.: Fun sheet matching: towards automatic block decomposition for hexahedral meshes. Eng. Comput. 28, 241–253 (2012) CrossRefGoogle Scholar
  15. 15.
    Ledoux, H., Gold, C.M.: Simultaneous storage of primal and dual three-dimensional subdivisions. Comput. Environ. Urban Syst. 31(4), 393–408 (2007) CrossRefGoogle Scholar
  16. 16.
    Takashi, M.: An overview of offset curves and surfaces. Comput. Aided Des. 31(3), 165–173 (1999) CrossRefMATHGoogle Scholar
  17. 17.
    Murdoch, P., Benzley, S., Blacker, T., Mitchell, S.A.: The spatial twist continuum: a connectivity based method for representing all-hexahedral finite element meshes. Finite Elem. Anal. Des. 28(2), 137–149 (1997) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
  19. 19.
    Nieser, M., Reitebuch, U., Polthier, K.: CubeCover—parameterization of 3D volumes. Comput. Graph. Forum 30(5), 1397–1406 (2011) CrossRefGoogle Scholar
  20. 20.
    OpenSG. Open source scenegraph OpenSG. http://www.opensg.org/
  21. 21.
    Owen, S.J.: A survey of unstructured mesh generation technology. In: IMR, pp. 239–267 (1998) Google Scholar
  22. 22.
    Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Berlin (2010) CrossRefMATHGoogle Scholar
  23. 23.
    Pavic, D., Kobbelt, L.: High-resolution volumetric computation of offset surfaces with feature preservation. Comput. Graph. Forum 27(2), 165–174 (2008) CrossRefGoogle Scholar
  24. 24.
    Pham, B.: Offset curves and surfaces: a brief survey. Comput. Aided Des. 24(4), 223–229 (1992) CrossRefGoogle Scholar
  25. 25.
    Rosen, D.W.: Computer-aided design for additive manufacturing of cellular structures. Comput-Aided Des. Appl. 4(1–6), 585–594 (2007) Google Scholar
  26. 26.
    Schneiders, R.: Algorithms for quadrilateral and hexahedral mesh generation. Lect. Ser. - Kareman Inst. Fluid Dyn. 5, L1–L56 (2000) Google Scholar
  27. 27.
    Schneiders, R.: Mesh generators (2013). http://www.robertschneiders.de/meshgeneration/software.html
  28. 28.
    Si, H.: TetGen: a quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. http://tetgen.berlios.de/
  29. 29.
    Srinivasan, V., Mandal, E., Akleman, E.: Solidifying wireframes (2005) Google Scholar
  30. 30.
    Wadley, H.N.G.: Multifunctional periodic cellular metals. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 364(1838), 31–68 (2006) CrossRefGoogle Scholar
  31. 31.
    Wang, H., Chen, Y., Rosen, D.W.: A hybrid geometric modeling method for large scale conformal cellular structures. ASME Conf. Proc. 2005(47403), 421–427 (2005) Google Scholar
  32. 32.
    Yoo, D.J.: Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32(31), 7741–7754 (2011) CrossRefGoogle Scholar
  33. 33.
    Yoo, D.-J., Kwon, H.-H.: Shape reconstruction, shape manipulation, and direct generation of input data from point clouds for rapid prototyping. Int. J. Precis. Eng. Manuf. 10, 103–113 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Asla Medeiros e Sá
    • 1
  • Karina Rodriguez Echavarria
    • 2
  • David Arnold
    • 2
  1. 1.Escola de Matemática Aplicada FGV/EMApRio de JaneiroBrazil
  2. 2.Cultural Informatics Research GroupUniversity of BrightonBrightonUK

Personalised recommendations