The Visual Computer

, Volume 29, Issue 12, pp 1319–1332 | Cite as

Key-components: detection of salient regions on 3D meshes

Original Article


In this paper, we present a method to detect stable components on 3D meshes. A component is a salient region on the mesh which contains discriminative local features. Our goal is to represent a 3D mesh with a set of regions, which we called key-components, that characterize the represented object and therefore, they could be used for effective matching and recognition. As key-components are features in coarse scales, they are less sensitive to mesh deformations such as noise. In addition, the number of key-components is low compared to other local representations such as keypoints, allowing us to use them in efficient subsequent tasks. A desirable characteristic of a decomposition is that the components should be repeatable regardless shape transformations. We show in the experiments that the key-components are repeatable and robust under several transformations using the SHREC’2010 feature detection benchmark. In addition, we discover the connection between the theory of saliency of visual parts from the cognitive science and the results obtained with our technique.


3D features Mesh decomposition 



This project has been partially funded by CONICYT (Chile) through the Doctoral Scholarship, and FONDECYT (Chile) Project 1110111. We would like to thank Roee Litman for gently providing us the implementation of MSER components for our evaluation. Also, we thank Michael Bronstein for his extremely useful help with the SHREC’2010 feature detection and description benchmark.


  1. 1.
    Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N.S.: Protrusion-oriented 3D mesh segmentation. Vis. Comput. 26(1), 63–81 (2009) CrossRefGoogle Scholar
  2. 2.
    Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3D shape segmentation based on a quantum mechanical feature descriptor. In: Mester, R., Felsberg, M. (eds.) DAGM-Symposium. Lecture Notes in Computer Science, vol. 6835, pp. 122–131. Springer, Berlin (2011) Google Scholar
  3. 3.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Berlin (2005) Google Scholar
  4. 4.
    Boyer, E., Bronstein, A., Bronstein, M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., Litman, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P., Vandermeulen, D., Zaharescu, A., Zobel, V.: SHREC 2011: robust feature detection and description benchmark. In: Proc. Eurographics 2011 Workshop on 3D Object Retrieval (3DOR’11), pp. 71–78. Eurographics Association, Aire-la-Ville (2011) Google Scholar
  5. 5.
    Bronstein, A.M., Bronstein, M.M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Kokkinos, I., Murino, V., Sipiran, I., Ovsjanikov, M., Patanè, G., Spagnuolo, M., Sun, J.: SHREC 2010: robust feature detection and description benchmark. In: Proc. Workshop on 3D Object Retrieval (3DOR’10), Eurographics Association, Aire-la-Ville (2010) Google Scholar
  6. 6.
    Digne, J., Morel, J.M., Audfray, N., Mehdi-Souzani, C.: The level set tree on meshes. In: Proc. of the Fifth Int. Symposium on 3D Data Processing, Visualization and Transmission, Paris, France (2010) Google Scholar
  7. 7.
    Dutagaci, H., Cheung, C., Godil, A.: Evaluation of 3D interest point detection techniques via human-generated ground truth. Vis. Comput. 28, 901–917 (2012) CrossRefGoogle Scholar
  8. 8.
    Fang, Y., Sun, M., Kim, M., Ramani, K.: Heat-mapping: a robust approach toward perceptually consistent mesh segmentation. In: IEEE Computer Vision and Pattern Recognition, pp. 2145–2152 (2011) Google Scholar
  9. 9.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006) CrossRefGoogle Scholar
  10. 10.
    Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012) CrossRefGoogle Scholar
  11. 11.
    Hoffman, D.D., Singh, M.: Salience of visual parts. Cognition 63(1), 29–78 (1997) CrossRefGoogle Scholar
  12. 12.
    Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009) CrossRefGoogle Scholar
  13. 13.
    Huang, Q.X., Wicke, M., Adams, B., Guibas, L.: Shape decomposition using modal analysis. Comput. Graph. Forum 28(2), 407–416 (2009) CrossRefGoogle Scholar
  14. 14.
    Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8), 649–658 (2005) CrossRefGoogle Scholar
  15. 15.
    Kim, Y., Varshney, A., Jacobs, D.W., Guimbretière, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. 7(2), 12:1–12:13 (2010) CrossRefGoogle Scholar
  16. 16.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95, 8431–8435 (1998) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005) CrossRefGoogle Scholar
  18. 18.
    Leifman, G., Shtrom, E., Tal, A.: Surface regions of interest for viewpoint selection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 414–421 (2012) Google Scholar
  19. 19.
    Leow, W.K., Li, R.: The analysis and applications of adaptive-binning color histograms. Comput. Vis. Image Underst. 94, 67–91 (2004) CrossRefGoogle Scholar
  20. 20.
    Litman, R., Bronstein, A.M., Bronstein, M.M.: Diffusion-geometric maximally stable component detection in deformable shapes. Comput. Graph. 35(3), 549–560 (2011). Shape Modeling International (SMI) Conference 2011 CrossRefGoogle Scholar
  21. 21.
    Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. In: Proceedings of the Eighth Annual Symposium on Computational Geometry, SCG ’92, pp. 1–8. ACM, New York (1992) CrossRefGoogle Scholar
  22. 22.
    Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38, 227–248 (2003) CrossRefGoogle Scholar
  23. 23.
    Pokrass, J., Bronstein, A.M., Bronstein, M.M., Sprechmann, P., Sapiro, G.: Sparse modeling of intrinsic correspondences. Comput. Graph. Forum 32(2pt4), 459–468 (2013). doi: 10.1111/cgf.12066 CrossRefGoogle Scholar
  24. 24.
    Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008) CrossRefMATHGoogle Scholar
  25. 25.
    Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3D objects. Int. J. Comput. Vis. 89(2–3), 309–326 (2010) CrossRefGoogle Scholar
  26. 26.
    Shilane, P., Funkhouser, T.: Distinctive regions of 3D surfaces. ACM Trans. Graph. 26(2) (2007) Google Scholar
  27. 27.
    Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 27, 963–976 (2011) CrossRefGoogle Scholar
  28. 28.
    Sipiran, I., Bustos, B.: Key-component detection on 3D meshes using local features. In: 3DOR, pp. 25–32 (2012) Google Scholar
  29. 29.
    Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: CVPR Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment (2010) Google Scholar
  30. 30.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing, SGP ’09, pp. 1383–1392. Eurographics Association, Aire-la-Ville (2009) Google Scholar
  31. 31.
    Sun, M., Fang, Y., Ramani, K.: Center-shift: an approach towards automatic robust mesh segmentation (ARMS). In: CVPR, pp. 630–637. IEEE Press, New York (2012) Google Scholar
  32. 32.
    Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Proc. Workshop on 3D Object Retr. (3DOR), pp. 21–28. Eurographics Association, Aire-la-Ville (2009) Google Scholar
  33. 33.
    Zhang, J., Zheng, J., Wu, C., Cai, J.: Variational mesh decomposition. ACM Trans. Graph. 31(3), 21:1–21:14 (2012) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.PRISMA Research Group, Department of Computer ScienceUniversity of ChileSantiagoChile

Personalised recommendations