Advertisement

The Visual Computer

, Volume 30, Issue 4, pp 455–465 | Cite as

Depth manipulation using disparity histogram analysis for stereoscopic 3D

  • Sangwoo Lee
  • Younghui Kim
  • Jungjin Lee
  • Kyehyun Kim
  • Kyunghan Lee
  • Junyong NohEmail author
Original Article

Abstract

The importance of post-production for stereoscopic 3D is increasing rapidly. In particular, depth manipulation is essential, as there are many situations in which the captured depth requires further adjustment. Nonlinear disparity mapping has been a popular choice for efficient depth manipulation. However, most existing work requires users to have a deep understanding of how stereo works. This paper proposes a novel and very intuitive-to-use nonlinear disparity mapping technique. A commonly used multirigging technique inspired this work. Specifically, our method creates multiple depth layers using the Gaussian Mixture Model (GMM) and a histogram analysis. The depth position and volume are then manipulated with simple parameters at each layer individually, achieving complex nonlinearity in terms of depth control. The employed optimization scheme ensures the preservation of the original depth order. A user study shows that our method is very easy to use and simple to control. We demonstrate the versatility of our method with various practical applications.

Keywords

Stereoscopic 3D Depth manipulation Disparity retargeting Depth editing 

Notes

Acknowledgements

This work was supported by MKE (10040959, Development of Compositing Software Supporting 4K Images).

Supplementary material

(AVI 50.9 MB)

References

  1. 1.
    Bleyer, M., Rother, C., Kohli, P., Scharstein, D., Sinha, S.N.: Object stereo—joint stereo matching and object segmentation. In: CVPR, pp. 3081–3088. IEEE Press, New York (2011) Google Scholar
  2. 2.
    Chang, C.H., Liang, C.K., Chuang, Y.Y.: Content-aware display adaptation and interactive editing for stereoscopic images. IEEE Trans. Multimed. 13(4), 589–601 (2011) CrossRefGoogle Scholar
  3. 3.
    Dejohn, M., Drees, W., Seigle, D., Susinno, J.: Stereoscopic geometry of 3d presentations. Second in a series of technical report from In-three (2007) Google Scholar
  4. 4.
    Du, S., Hu, S., Martin, R.: Changing perspective in stereoscopic images (2013) Google Scholar
  5. 5.
    Engle, R.: Beowulf 3d: a case study. Proc. SPIE 6803, 68030R (2008) CrossRefGoogle Scholar
  6. 6.
    Foundry, T.: Nuke: a commercial compositing software (2011) Google Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley Longman, Boston (2001) Google Scholar
  8. 8.
    Iyer, K., Chari, M., Kannan, H.: A novel approach to depth image based rendering based on non-uniform scaling of depth values. In: Second International Conference on Future Generation Communication and Networking Symposia, FGCNS ’08, vol. 3, pp. 31–34 (2008) CrossRefGoogle Scholar
  9. 9.
    Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997) CrossRefGoogle Scholar
  10. 10.
    Kim, J.: Personal Communication with Junghee, Kim, Chief Stereographer, Kaistudio (2012) Google Scholar
  11. 11.
    Kim, Y., Jung, H., Choi, S., Lee, J., Noh, J.: A single image representation model for efficient stereoscopic image creation. Comput. Graph. Forum 30, 2067–2076 (2011) CrossRefGoogle Scholar
  12. 12.
    Lamberti, F., Montrucchio, B., Sanna, A.: Cmbfhe: a novel contrast enhancement technique based on cascaded multistep binomial filtering histogram equalization. IEEE Trans. Consum. Electron. 52(3), 966–974 (2006) CrossRefGoogle Scholar
  13. 13.
    Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., Gross, M.: Nonlinear disparity mapping for stereoscopic 3d. ACM Trans. Graph. 29(4), 75 (2010) CrossRefGoogle Scholar
  14. 14.
    Lipton, L.: Foundations of the Stereoscopic Cinema: A Study in Depth. Van Nostrand Reinhold, New York (1982) Google Scholar
  15. 15.
    Lo, W., van Baar, J., Knaus, C., Zwicker, M., Gross, M.: Stereoscopic 3d copy & paste. In: ACM SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA’10, pp. 147:1–147:10. ACM, New York (2010) Google Scholar
  16. 16.
    Luo, S.J., Shen, I., Chen, B.Y., Cheng, W.H., Chuang, Y.Y., et al.: Perspective-aware warping for seamless stereoscopic image cloning. ACM Trans. Graph. 31(6), 182 (2012) Google Scholar
  17. 17.
    Mendiburu, B.: 3d Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press/Elsevier, Amsterdam (2009) Google Scholar
  18. 18.
    Neuman, R.: Bolt 3d: a case study. Proc. SPIE 7237, 72370F (2009) CrossRefGoogle Scholar
  19. 19.
    Niu, Y., Feng, W.C., Liu, F.: Enabling warping on stereoscopic images. ACM Trans. Graph. 31(6), 183 (2012) CrossRefGoogle Scholar
  20. 20.
    Scharstein, D., Szeliski, R.: An evaluation of dense two-frame stereo algorithms (2002). URL vision.middlebury.edu/stereo/
  21. 21.
    Smith, B.M., Zhang, L., Jin, H.: Stereo matching with nonparametric smoothness priors in feature space. In: CVPR’09, pp. 485–492 (2009) Google Scholar
  22. 22.
    Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(9), 889–896 (2000) CrossRefGoogle Scholar
  23. 23.
    Tong, R.f., Zhang, Y., Cheng, K., Stereopasting: Interactive composition in stereoscopic images. IEEE Trans. Vis. Comput. Graph. (2012) Google Scholar
  24. 24.
    Wang, C., Sawchuk, A.A.: Disparity manipulation for stereo images and video. Proc. SPIE 6803, 68031E (2008) CrossRefGoogle Scholar
  25. 25.
    Wang, L., Jin, H., Yang, R., Gong, M.: Stereoscopic inpainting: joint color and depth completion from stereo images. In: CVPR. IEEE Computer Society, Los Alamitos (2008) Google Scholar
  26. 26.
    Wu, Z., Ware, J., Wilson, I., Zhang, J.: Mechanism analysis of highly overlapped interpolation contrast enhancement. IEE Proc., Vis. Image Signal Process. 153(4), 512–520 (2006) CrossRefGoogle Scholar
  27. 27.
    Yan, T., Lau, R.W., Xu, Y., Huang, L.: Depth mapping for stereoscopic videos. Int. J. Comput. Vis., 1–15 (2013) Google Scholar
  28. 28.
    Yoon, H., Han, Y., Hahn, H.: Image contrast enhancement based sub-histogram equalization technique without over-equalization noise. Int. J. Electr. Electron. Eng. (2009) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sangwoo Lee
    • 1
  • Younghui Kim
    • 1
  • Jungjin Lee
    • 1
  • Kyehyun Kim
    • 1
  • Kyunghan Lee
    • 1
  • Junyong Noh
    • 1
    Email author
  1. 1.KAISTDaejeonKorea

Personalised recommendations