Advertisement

The Visual Computer

, Volume 30, Issue 4, pp 431–442 | Cite as

Optimizing neighborhood projection with relaxation factor for inextensible cloth simulation

  • Xiaowu Chen
  • Faming LiEmail author
  • Qinping Zhao
  • Long Quan
Original Article

Abstract

In this paper, we propose a novel method for inextensible cloth simulation. Our method introduces a neighborhood projection optimized with a relaxation factor. The neighborhood projection enforces inextensibility by modifying particle positions with a Jacobi-style iteration, leading to conservation of linear and angular quasi momenta. The relaxation factor is estimated according to the corrections and constraints, and is used to scale the corrections while keeping convergence to a smaller number of iterations. Experimental results demonstrate that our method increases the simulation efficiency, and stably handles inextensible cloth even in overconstrained situations. In addition to the simulation of hanging cloth and draping cloth, the simulated umbrella demonstrates the characters of our method for this type of objects.

Keywords

Cloth simulation Inextensibility Neighborhood projection Relaxation factor 

Notes

Acknowledgements

We would like to thank the anonymous reviewers for their help in improving the paper. We also thank Marie-Paule Cani for support. This work was partially supported by 863 Program (2012AA011504), NSFC (60933006), R&D Program (2013BAH35F01), and ITER (2012GB102008).

Supplementary material

(AVI 50.0 MB)

References

  1. 1.
    Ascher, U.M., Boxerman, E.: On the modified conjugate gradient method in cloth simulation. Vis. Comput. 19(7), 526–531 (2003) Google Scholar
  2. 2.
    Baraff, D.: Linear-time dynamics using Lagrange multipliers. In: Proc. of ACM SIGGRAPH, pp. 137–146 (1996) Google Scholar
  3. 3.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proc. of ACM SIGGRAPH, pp. 43–54 (1998) Google Scholar
  4. 4.
    Bender, J., Bayer, D.: Parallel simulation of inextensible cloth. In: Proc. of Virtual Reality Interactions and Physical Simulations (VRIPhys), pp. 47–55 (2008) Google Scholar
  5. 5.
    Bender, J., Bayer, D.: Impulse-based simulation of inextensible cloth. In: Computer Graphics and Visualization—IADIS Multi Conference on Computer Science and Information Systems, pp. 202–205 (2008) Google Scholar
  6. 6.
    Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., Grinspun, E.: A quadratic bending model for inextensible surfaces. In: Proc. of Fourth Eurographics Symposium on Geometry Processing, pp. 227–230 (2006) Google Scholar
  7. 7.
    Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: Proc. of ACM SIGGRAPH, pp. 365–372 (1994) Google Scholar
  8. 8.
    Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. In: Proc. of ACM SIGGRAPH (2002) Google Scholar
  9. 9.
    Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: Proc. of Symposium on Computer Animation, pp. 28–36 (2003) Google Scholar
  10. 10.
    Byrne, C.L.: Applied Iterative Methods. A.K. Peters, Wellesley (2007) CrossRefGoogle Scholar
  11. 11.
    Chen, Y., Magnenat Thalmann, N., Allen, B.F.: Physical simulation of wet clothing for virtual humans. Vis. Comput. 28, 765–774 (2012) CrossRefGoogle Scholar
  12. 12.
    Chen, X., Guo, Y., Zhou, B., Zhao, Q.: Deformable model for estimating clothed and naked human shapes from a single image. Vis. Comput. (2013) Google Scholar
  13. 13.
    Choi, K.-J., Ko, H.-S.: Stable but responsive cloth. In: Proc. of ACM SIGGRAPH, pp. 604–611 (2002) Google Scholar
  14. 14.
    Eberhardt, B., Etzmuß, O., Hauth, M.: Implicit-explicit schemes for fast animation with particle systems. In: Proc. of Eurographics Computer Animation and Simulation Workshop, pp. 137–151 (2000) Google Scholar
  15. 15.
    English, E., Bridson, R.: Animating developable surfaces using nonconforming elements. In: Proc. of ACM SIGGRAPH, pp. 66:1–66:5 (2008) Google Scholar
  16. 16.
    Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Trans. Graph. 26(3), 49:1–49:7 (2008) Google Scholar
  17. 17.
    Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M.J.: DRAPE: DRessnig Any PErson. ACM Trans. Graph. 31(4), 35:1–35:10 (2012) CrossRefGoogle Scholar
  18. 18.
    Hageman, L.A., Young, D.M.: Applied Iterative Methods. Academic Press, San Diego (1981) zbMATHGoogle Scholar
  19. 19.
    Hong, M., Choi, M.H., Jung, S., Welch, S.: Effective constrained dynamic simulation using implicit constraint enforcement. In: Proc. of International Conference on Robotics and Automation, pp. 4520–4525 (2005) Google Scholar
  20. 20.
    Jakobsen, T.: Advanced character physics. In: Proc. of Game Developer’s Conference, pp. 383–401 (2001) Google Scholar
  21. 21.
    Kaldor, J.M., James, D.L., Marschner, S.: Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27(3), 65:1–65:9 (2008). CrossRefGoogle Scholar
  22. 22.
    Kaldor, J.M., James, D.L., Marschner, S.: Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29(4), 105:1–105:10 (2010) CrossRefGoogle Scholar
  23. 23.
    Kim, T.Y., Chentanez, N., Müller, M.: Long range attachments—a method to simulate inextensible clothing in computer games. In: Proc. of Symposium on Computer Animation (2012) Google Scholar
  24. 24.
    Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:12 (2013) CrossRefGoogle Scholar
  25. 25.
    Marsden, J.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999) CrossRefzbMATHGoogle Scholar
  26. 26.
    Meyer, M., Debunne, G., Desbrun, M., Barr, A.H.: Interactive animation of cloth-like objects in virtual reality. J. Vis. Comput. Animat. 12(1), 1–12 (2001) CrossRefzbMATHGoogle Scholar
  27. 27.
    Miklós, B., Max, W., Stephen, R., Basile, A., Eitan, G.: Discrete elastic rods. ACM Trans. Graph. 27(3), 63:1–63:12 (2007) Google Scholar
  28. 28.
    Müller, M.: Hierarchical position based dynamics. In: Proc. of Virtual Reality Interactions and Physical Simulations (2008) Google Scholar
  29. 29.
    Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. In: Proc. of Virtual Reality Interactions and Physical Simulation, pp. 71–80 (2006) Google Scholar
  30. 30.
    Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. Proc. - Graph. Interface (1995). doi: 10.1.1.16.4040 Google Scholar
  31. 31.
    Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., Sheffer, A.: Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graph. 29(6), 157:1–157:8 (2010) CrossRefGoogle Scholar
  32. 32.
    Schenk, O., Gärtner, K.: On fast factorization pivoting methods for sparse symmetric indefinite systems. Electron. Trans. Numer. Anal. 23, 158–179 (2006) zbMATHMathSciNetGoogle Scholar
  33. 33.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proc. of ACM SIGGRAPH, pp. 205–214 (1987) Google Scholar
  34. 34.
    Thomaszewski, B., Pabst, S., Straßer, W.: Continuum-based strain limiting. Comput. Graph. Forum 28(2), 569–576 (2009) CrossRefGoogle Scholar
  35. 35.
    Tsiknis, D.: Better cloth through unbiased strain limiting and physics-aware subdivision. University of British (2006) Google Scholar
  36. 36.
    Umetani, N., Kaufman, D.M., Igarashi, T., Grinspun, E.: Sensitive couture for interactive garment editing and modeling. ACM Trans. Graph. 30(4), 90:1–90:12 (2011) CrossRefGoogle Scholar
  37. 37.
    Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159(1), 98–103 (1967) CrossRefGoogle Scholar
  38. 38.
    Volino, P., Courchesne, M., Magnenat Thalmann, N.: Versatile and efficient techniques for simulating cloth and other deformable objects. In: Proc. of ACM SIGGRAPH, pp. 137–144 (1995) Google Scholar
  39. 39.
    Volino, P., Magnenat-Thalmann, N., Faure, F.: A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28(4), 105:1–105:16 (2009). CrossRefGoogle Scholar
  40. 40.
    Wang, H., O’Brien, J.F., Ramamoorthi, R.: Multi-resolution isotropic strain limiting. ACM Trans. Graph. 29(6), 156:1–156:10 (2010) Google Scholar
  41. 41.
    Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30(4), 71:1–71:12 (2011) Google Scholar
  42. 42.
    Ye, J.: Simulating inextensible cloth using impulses. Comput. Graph. Forum 27(7), 1901–1907 (2008) CrossRefGoogle Scholar
  43. 43.
    Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, San Diego (1971) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaowu Chen
    • 1
  • Faming Li
    • 1
    Email author
  • Qinping Zhao
    • 1
  • Long Quan
    • 2
  1. 1.State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Department of Computer Science and EngineeringThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations