The Visual Computer

, Volume 29, Issue 9, pp 849–859 | Cite as

Visibility-driven progressive volume photon tracing

  • Charly Collin
  • Mickaël Ribardière
  • Adrien Gruson
  • Rémi Cozot
  • Sumanta Pattanaik
  • Kadi Bouatouch
Original Article

Abstract

In this paper, we present a novel approach to progressive photon-based volume rendering techniques. By making use of two Kd-trees (built in a preprocessing step) to store view beams (primary rays intersecting the medium) and visible points, our method allows to handle scenes with specular and refractive objects as well as homogeneous and heterogeneous participating media and does not require the storage of photon maps, which solves the memory management issue. These data structures are used to drive the photon shooting process by considering the photon visibility as an importance function (similarly to Hachisuka and Jensen in ACM Trans. Graph. 30(5):114:1–114:11, 2011) for scenes containing participating media. Finally, we demonstrate that our method can be easily combined with the most recent particle tracing approaches such as the one presented in Jarosz et al. (ACM Trans. Graph., vol. 30(6), 2011).

Keywords

Rendering Global illumination Participating media Markov chain Monte Carlo 

References

  1. 1.
    Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960) Google Scholar
  2. 2.
    Hachisuka, T., Jensen, H.W.: Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph. 30(5), 114:1–114:11 (2011) CrossRefGoogle Scholar
  3. 3.
    Hachisuka, T., Ogaki, S., Jensen, H.W.: Progressive photon mapping. ACM Trans. Graph. 27, 130:1–130:8 (2008) Google Scholar
  4. 4.
    Havran, V., Bittner, J., Seidel, H.P.: Ray maps for global illumination. In: ACM SIGGRAPH 2004 Sketches, SIGGRAPH’04, p. 77. ACM, New York (2004) CrossRefGoogle Scholar
  5. 5.
    Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.org
  6. 6.
    Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.P., Zwicker, M.: Progressive photon beams. In: Proceedings of ACM SIGGRAPH Asia. ACM Trans. Grap., vol. 30(6) (2011) Google Scholar
  7. 7.
    Jarosz, W., Zwicker, M., Jensen, H.W.: The beam radiance estimate for volumetric photon mapping. Comput. Graph. Forum 27(2), 557–566 (2008) (Proceedings of Eurographics 2008) CrossRefGoogle Scholar
  8. 8.
    Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. Peters, Natick (2001) MATHGoogle Scholar
  9. 9.
    Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in sciences with participating media using photon maps. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’98, pp. 311–320. ACM, New York (1998) CrossRefGoogle Scholar
  10. 10.
    Keller, A.: Instant radiosity. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’97, pp. 49–56. ACM Press/Addison-Wesley, New York (1997) CrossRefGoogle Scholar
  11. 11.
    Knaus, C., Zwicker, M.: Progressive photon mapping: a probabilistic approach. ACM Trans. Graph. 30, 25:1–25:13 (2011) CrossRefGoogle Scholar
  12. 12.
    Novák, J., Nowrouzezahrai, D., Dachsbacher, C., Jarosz, W.: Progressive virtual beam lights. In Proceedings of EGSR 2012. Comput. Graph. Forum, vol. 31(4) (2012) Google Scholar
  13. 13.
    Novák, J., Nowrouzezahrai, D., Dachsbacher, C., Jarosz, W.: Virtual ray lights for rendering scenes with participating media. In: Proceedings of ACM SIGGRAPH 2012. ACM Trans. Graph., vol. 31(4) (2012) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Charly Collin
    • 1
  • Mickaël Ribardière
    • 2
  • Adrien Gruson
    • 2
  • Rémi Cozot
    • 2
  • Sumanta Pattanaik
    • 1
  • Kadi Bouatouch
    • 2
  1. 1.University of Central FloridaOrlandoUSA
  2. 2.IRISAUniversité de Rennes 1RennesFrance

Personalised recommendations