Advertisement

The Visual Computer

, Volume 30, Issue 3, pp 271–283 | Cite as

Solid texture synthesis for heterogeneous translucent materials

  • Myoung Kook Seo
  • Hoe-Min Kim
  • Kwan H. LeeEmail author
Original Article
  • 491 Downloads

Abstract

We present a method to synthesize solid textures from heterogeneous translucent materials that have a complex pattern and subsurface scattering effect. A solid texture provides consistent texture throughout the volume, so that it can be used to model the texture on an arbitrary geometry. However, solid texture synthesis requires a huge amount of time to generate the volume. Moreover, a synthesized solid texture acquires only the color information from an input exemplar. Therefore, it has been difficult to render the appearance of a translucent object realistically without additional appearance data. In this paper, we introduce a new search method to accelerate synthesizing of solid textures. This method decomposes the candidates in an exemplar into several subgroups and searches for the best similar neighborhood in each decomposed subgroup. We also apply subsurface scattering effects to the shell layer of a synthesized object for realistic rendering of a translucent solid texture. Experimental results show that our rendering method can produce realistic rendering results for various heterogeneous translucent objects. It can also represent cross-sections of an object realistically without reconstructing the texture and surface geometry.

Keywords

Solid textures Heterogeneous translucent materials Measured scattering data 

Notes

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2013031191).

Supplementary material

(AVI 9.4 MB)

References

  1. 1.
    Arbree, A., Walter, B., Bala, K.: Heterogeneous subsurface scattering using the finite element method. IEEE Trans. Vis. Comput. Graph. 17(7), 956–969 (2011) CrossRefGoogle Scholar
  2. 2.
    Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting. Vis. Comput. 28(6–8), 701–711 (2012) CrossRefGoogle Scholar
  3. 3.
    Chen, J., Wang, B.: High quality solid texture synthesis using position and index histogram matching. Vis. Comput. 26(4), 253–262 (2010) CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Shell texture functions. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH’04, pp. 343–353. ACM, New York (2004) CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Ip, H.H.-S.: Texture evolution: 3d texture synthesis from single 2d growable texture pattern. Vis. Comput. 20(10), 650–664 (2004) CrossRefGoogle Scholar
  6. 6.
    Dong, Y., Lefebvre, S., Tong, X., Drettakis, G.: Lazy solid texture synthesis. In: Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) (2008) Google Scholar
  7. 7.
    Donner, C., Wann Jensen, H.: A spectral bssrdf for shading human skin. In: Rendering Techniques 2006: 17th Eurographics Workshop on Rendering, pp. 409–418 (2006) Google Scholar
  8. 8.
    Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., Rusinkiewicz, S.: A layered, heterogeneous reflectance model for acquiring and rendering human skin. In: ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH’08, pp. 1–12. ACM, New York (2008) CrossRefGoogle Scholar
  9. 9.
    Du, S.-P., Hu, S.-M., Martin, R.R.: Semiregular solid texturing from 2d image exemplars. IEEE Trans. Vis. Comput. Graph. 19(3), 460–469 (2013) CrossRefGoogle Scholar
  10. 10.
    Eisenacher, C., Lefebvre, S., Stamminger, M.: Texture synthesis from photographs. In: Proceedings of the Eurographics conference (2008) Google Scholar
  11. 11.
    Fuchs, C., Goesele, M., Chen, T., Seidel, H.-P.: An empirical model for heterogeneous translucent objects. In: ACM SIGGRAPH 2005 Sketches, SIGGRAPH’05. ACM, New York (2005) Google Scholar
  12. 12.
    Han, J., Zhou, K., Wei, L.-Y., Gong, M., Bao, H., Zhang, X., Guo, B.: Fast example-based surface texture synthesis via discrete optimization. Vis. Comput. 9(11), 918–925 (2006) CrossRefGoogle Scholar
  13. 13.
    Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 327–340. ACM, New York (2001) CrossRefGoogle Scholar
  14. 14.
    Jagnow, R., Dorsey, J., Rushmeier, H.: Stereological techniques for solid textures. ACM Trans. Graph. 23, 329–335 (2004) CrossRefGoogle Scholar
  15. 15.
    Wann Jensen, H., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21(3), 576–581 (2002) Google Scholar
  16. 16.
    Wann Jensen, H., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 511–518. ACM, New York (2001) CrossRefGoogle Scholar
  17. 17.
    Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.-T.: Solid texture synthesis from 2d exemplars. ACM Trans. Graph. 26(3), 2 (2007) CrossRefGoogle Scholar
  18. 18.
    Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. ACM Trans. Graph. 25(3), 541–548 (2006) CrossRefGoogle Scholar
  19. 19.
    Mount, D., Arya, S.:. Ann: A Library for Approximate Nearest Neighbor Searching (1997) Google Scholar
  20. 20.
    Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH’06, pp. 746–753. ACM, New York (2006) CrossRefGoogle Scholar
  21. 21.
    Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’85, pp. 287–296. ACM, New York (1985) CrossRefGoogle Scholar
  22. 22.
    Pietroni, N., Otaduy, M.A., Bickel, B., Ganovelli, F., Gross, M.: Texturing internal surfaces from a few cross sections. Comput. Graph. Forum 26(3), 637–644 (2007) CrossRefGoogle Scholar
  23. 23.
    Pietroni, N., Cignoni, P., Otaduy, M.A., Scopigno, R.: Solid-texture synthesis: a survey. IEEE Comput. Graph. Appl. 30(4), 74–89 (2010) CrossRefGoogle Scholar
  24. 24.
    Qin, X., Yang, Y.-H.: Aura 3d textures. IEEE Trans. Vis. Comput. Graph. 13(2), 379–389 (2007) CrossRefGoogle Scholar
  25. 25.
    Robertson, M.A., Borman, S., Stevenson, R.L.: Estimation-theoretic approach to dynamic range enhancement using multiple exposures. J. Electron. Imaging 12(2), 219–285 (2003) CrossRefGoogle Scholar
  26. 26.
    Song, Y., Chen, Y., Tong, X., Lin, S., Shi, J., Guo, B., Shum, H.-Y.: Shell radiance texture functions. Vis. Comput. 21(8–10), 774–782 (2005) CrossRefGoogle Scholar
  27. 27.
    Song, Y., Tong, X., Pellacini, F., Peers, P.: Subedit: a representation for editing measured heterogeneous subsurface scattering. In: ACM SIGGRAPH 2009 Papers, SIGGRAPH’09, pp. 1–10. ACM, New York (2009) CrossRefGoogle Scholar
  28. 28.
    Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Modeling and rendering of quasi-homogeneous materials. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH’05, pp. 1054–1061. ACM, New York (2005) CrossRefGoogle Scholar
  29. 29.
    Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.-Y.: Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Trans. Graph. 21, 665–672 (2002) CrossRefGoogle Scholar
  30. 30.
    Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.-Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 9 (2008) Google Scholar
  31. 31.
    Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.-H., Guo, B.: Real-time rendering of heterogeneous translucent objects with arbitrary shapes. In: Computer Graphics Forum (Proceedings of Eurographics 2010) (2010) Google Scholar
  32. 32.
    Worley, S.: A cellular texture basis function. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’96, pp. 291–294. ACM, New York (1996) CrossRefGoogle Scholar
  33. 33.
    Wu, Q., Yu, Y.: Feature matching and deformation for texture synthesis. ACM Trans. Graph. 23(3), 364–367 (2004) CrossRefGoogle Scholar
  34. 34.
    Zhang, G.-X., Du, S.-P., Lai, Y.-K., Hu, S.-M.: Efficient synthesis of gradient solid textures. Graph. Models 75(3), 104–117 (2012) CrossRefGoogle Scholar
  35. 35.
    Zhang, G.-X., Du, S.-P., Lai, Y.-K., Ni, T., Hu, S.-M.: Sketch guided solid texturing. Graph. Models 73(3), 59–73 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Gwangju Institute of Science and TechnologyGwangjuKorea

Personalised recommendations