The Visual Computer

, Volume 29, Issue 6–8, pp 817–824 | Cite as

An empirical study on the effects of translucency on photometric stereo

Original Article

Abstract

We present an empirical study on the effects of translucency on photometric stereo. Our study shows that the impact on the accuracy of the photometric normals is related to the relative size of the geometrical features and the mean free path. We show that under simplified conditions, the obtained photometric normals are a blurred version of the true surface normals, where the blur kernel is directly related to the subsurface scattering profile. We furthermore investigate the impact of scattering albedo, index of refraction, and single scattering on the accuracy. We perform our analysis using simulations, and demonstrate the validity on a real world example.

Keywords

Subsurface scattering Photometric stereo 

Notes

Acknowledgements

This work was supported in part by Google, and NSF grants IIS-1016703 and IIS-1217765. The first author acknowledges additional support from the Virginia Space Grant Consortium.

References

  1. 1.
    Alldrin, N., Kriegman, D.: Toward reconstructing surfaces with arbitrary isotropic reflectance: a stratified photometric stereo approach. In: Proc. Int. Conf. Computer Vision, pp. 1–8 (2007) Google Scholar
  2. 2.
    Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1239–1252 (2003) CrossRefGoogle Scholar
  3. 3.
    Basri, R., Jacobs, D.: Photometric stereo with general, unknown lighting. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 374–381 (2001) Google Scholar
  4. 4.
    D’Eon, E., Irving, G.: A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30(4), 56:1–56:14 (2011) Google Scholar
  5. 5.
    Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24(3), 1032–1039 (2005) CrossRefGoogle Scholar
  6. 6.
    Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H.W., Nayar, S.K.: An empirical bssrdf model. ACM Trans. Graph. 28(3) (2009) Google Scholar
  7. 7.
    Godin, G., Beraldin, J.-A., Rioux, M., Levoy, M., Cournoyer, L., Blais, F.: An assessment of laser range measurement of marble surfaces. In: Proc. Fifth Conference on Optical 3-D Measurement Techniques (2001) Google Scholar
  8. 8.
    Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.-P.: Disco: acquisition of translucent objects. ACM Trans. Graph. 23(3), 835–844 (2004) CrossRefGoogle Scholar
  9. 9.
    Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying brdfs from photometric stereo. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 341–348 (2005) Google Scholar
  10. 10.
    Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. In: Proc. SIGGRAPH 93, pp. 165–174 (1993) CrossRefGoogle Scholar
  11. 11.
    Holroyd, M., Lawrence, J.: An analysis of using high-frequency sinusoidal illumination to measure the 3d shape of translucent objects. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 2985–2991 (2011) Google Scholar
  12. 12.
    Holroyd, M., Lawrence, J., Zickler, T.: A coaxial optical scanner for synchronous acquisition of 3d geometry and surface reflectance. ACM Trans. Graph. 29(4) (2010) Google Scholar
  13. 13.
    Inoshita, C., Mukaigawa, Y., Matsushita, Y., Yagi, Y.: Shape from single scattering for translucent objects. In: Proc. European Conf. Computer Vision, pp. 371–384 (2012) Google Scholar
  14. 14.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proc. SIGGRAPH 2001, pp. 511–518 (2001) Google Scholar
  15. 15.
    Ma, W., Hawkins, T., Peers, P., Chabert, C., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Proc. Eurographics Symposium on Rendering (2007) Google Scholar
  16. 16.
    Nayar, S.K., Ikeuchi, K., Kanade, T.: Determining shape and reflectance of Lambertian, specular, and hybrid surfaces using extended sources. In: International Workshop on Industrial Applications of Machine Intelligence and Vision, pp. 169–175 (1989) CrossRefGoogle Scholar
  17. 17.
    Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25(3), 935–944 (2006) CrossRefGoogle Scholar
  18. 18.
    Nehab, D., Rusinkiewicz, S., Davis, J., Ramamoorthi, R.: Efficiently combining positions and normals for precise 3d geometry. ACM Trans. Graph. 24(3), 536–543 (2005) CrossRefGoogle Scholar
  19. 19.
    Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometric Considerations and Nomenclature for Reflectance. National Bureau of Standards Monograph, vol. 160 (1977) Google Scholar
  20. 20.
    Stam, J.: Multiple scattering as a diffusion process. In: Proc. Eurographics Workshop on Rendering, pp. 41–50 (1995) Google Scholar
  21. 21.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 3050–3068 (1980) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of William & MaryWilliamsburgUSA

Personalised recommendations