Advertisement

The Visual Computer

, Volume 29, Issue 6–8, pp 513–524 | Cite as

A multiresolution descriptor for deformable 3D shape retrieval

  • Chunyuan Li
  • A. Ben HamzaEmail author
Original Article

Abstract

In this paper, we present a spectral graph wavelet framework for the analysis and design of efficient shape signatures for nonrigid 3D shape retrieval. Although this work focuses primarily on shape retrieval, our approach is, however, fairly general and can be used to address other 3D shape analysis problems. In a bid to capture the global and local geometry of 3D shapes, we propose a multiresolution signature via a cubic spline wavelet generating kernel. The parameters of the proposed signature can be easily determined as a trade-off between effectiveness and compactness. Experimental results on two standard 3D shape benchmarks demonstrate the much better performance of the proposed shape retrieval approach in comparison with three state-of-the-art methods. Additionally, our approach yields a higher retrieval accuracy when used in conjunction with the intrinsic spatial partition matching.

Keywords

Spectral graph wavelet Laplace–Beltrami Shape retrieval Multiresolution 

Notes

Acknowledgements

This work was supported in part by NSERC Discovery Grant.

References

  1. 1.
    Yang, Y., Lin, H., Zhang, Y.: Content-based 3-D model retrieval: a survey. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 37(6), 1081–1098 (2007) CrossRefGoogle Scholar
  2. 2.
    Tangelder, J., Veltkamp, R.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008) CrossRefGoogle Scholar
  3. 3.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proc. Shape Modeling International, pp. 167–178 (2004) Google Scholar
  4. 4.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoue, G., Nguyen, H., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. In: Proc. Eurographics Symp. 3D Object Retrieval, pp. 79–88 (2011) Google Scholar
  5. 5.
    Li, B., Godil, A., Aono, M., Bai, X., Furuya, T., Li, L., López-Sastre, R., Johan, H., Ohbuchi, R., Redondo-Cabrera, C., Tatsuma, A., Yanagimachi, T., Zhang, S.: SHREC’12 track: generic 3D shape retrieval. In: Proc. Eurographics Conf. 3D Object Retrieval, pp. 119–126 (2012) Google Scholar
  6. 6.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013) CrossRefGoogle Scholar
  7. 7.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lévy, B.: Laplace–Beltrami eigenfunctions: towards an algorithm that “understands” geometry. In: Proc. IEEE Int. Conf. Shape Modeling and Applications, p. 13 (2006) Google Scholar
  9. 9.
    Reuter, M., Wolter, F., Peinecke, N.: Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006) CrossRefGoogle Scholar
  10. 10.
    Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace–Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2), 287–308 (2010) CrossRefGoogle Scholar
  11. 11.
    Rustamov, R.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Symposium on Geometry Processing, pp. 225–233 (2007) Google Scholar
  12. 12.
    Bronstein, A., Bronstein, M., Guibas, L., Ovsjanikov, M.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1–20 (2011) CrossRefGoogle Scholar
  13. 13.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. Eurographics Sympo. Geometry Processing, pp. 156–164 (2003) Google Scholar
  14. 14.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009) CrossRefGoogle Scholar
  15. 15.
    Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28(5), 1405–1513 (2009) CrossRefGoogle Scholar
  16. 16.
    Kokkinos, I., Bronstein, M., Litman, R., Bronstein, A.: Intrinsic shape context descriptors for deformable shapes. In: Proc. Computer Vision and Pattern Recognition, pp. 159–166 (2012) Google Scholar
  17. 17.
    Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: Proc. Computational Methods for the Innovative Design of Electrical Devices, pp. 1626–1633 (2011) Google Scholar
  18. 18.
    Bronstein, A.: Spectral descriptors for deformable shapes. CoRR abs/1110.5015 (2011) Google Scholar
  19. 19.
    Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, San Diego (2008) Google Scholar
  20. 20.
    Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hammond, D., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kim, W., Pachauri, D., Hatt, C., Chung, M., Johnson, S., Singh, V.: Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. In: Proc. NIPS, pp. 1135–1143 (2012) Google Scholar
  23. 23.
    Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997) zbMATHCrossRefGoogle Scholar
  24. 24.
    Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, Berlin (2008) zbMATHGoogle Scholar
  25. 25.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. III 3(7), 35–57 (2003) CrossRefGoogle Scholar
  26. 26.
    Wardetzky, M., Mathur, S., Kälberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. In: Proc. Eurographics Sympo. Geometry Processing, pp. 33–37 (2007) Google Scholar
  27. 27.
    Lian, Z., Godil, A., Fabry, T., Furuya, T., Hermans, J., Ohbuchi, R., Shu, C., Smeets, D., Suetens, P., Vandermeulen, D., Wuhrer, S.: SHREC’10 track: non-rigid 3D shape retrieval. In: Proc. Eurographics Sympo. 3D Object Retrieval, pp. 101–108 (2010) Google Scholar
  28. 28.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proc. CVPR, vol. 2, pp. 2169–2178 (2006) Google Scholar
  29. 29.
    Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proc. SIGIR, pp. 41–48 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Concordia Institute for Information Systems EngineeringConcordia UniversityMontrealCanada

Personalised recommendations