Advertisement

The Visual Computer

, Volume 29, Issue 6–8, pp 729–738 | Cite as

Abstracting images into continuous-line artistic styles

  • Fernando J. Wong
  • Shigeo TakahashiEmail author
Original Article

Abstract

This paper focuses on the problem of designing and generating illustrations that portray a given scene with a single non-intersecting line. In this approach, users partition an image into regions, assigning a type or style to each of them. Next, a grid is generated over the drawing space, based on the parameters specified for each region. The illustration is then obtained in the form of a path that covers most areas of the grid. Contrary to previous works, our approach allows users to control the overall flow of the line throughout any given region, by providing the means to define tensor fields per region which directly influence the line orientation. We also extend this work for generating continuous-line paintings, a similar style consisting of a single line that varies in color and thickness while covering the entire drawing space. This is achieved by transforming drawings obtained with the above-mentioned approach through a Voronoi-based strategy.

Keywords

Continuous-line art Line drawing Image abstraction Non-photorealistic rendering 

Notes

Acknowledgements

We thank all the participants in our preliminary user study for helping us in this algorithm formulation. This research has been partially supported by Japan Society for the Promotion of Science under Grants-in-Aid for Scientific Research (B) No. 21300033, and Challenging Exploratory Research No. 23650042.

References

  1. 1.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003) CrossRefGoogle Scholar
  2. 2.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007) Google Scholar
  3. 3.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: Concorde TSP solver (2011). http://www.tsp.gatech.edu/concorde/index.html
  4. 4.
    Bosch, R., Herman, A.: Continuous line drawings via the traveling salesman problem. Oper. Res. Lett. 32(4), 302–303 (2004) zbMATHCrossRefGoogle Scholar
  5. 5.
    CGAL: Cgal, Computational Geometry Algorithms Library (2012). http://www.cgal.org
  6. 6.
    Chi, M.T., Lee, T.Y., Qu, Y., Wong, T.T.: Self-animating images: illusory motion using repeated asymmetric patterns. ACM Trans. Graph. 27(3), 62:1–62:8 (2008) CrossRefGoogle Scholar
  7. 7.
    Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.Q.: Color harmonization. ACM Trans. Graph. 25(3), 624–630 (2006) CrossRefGoogle Scholar
  8. 8.
    Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann, San Francisco (2008) Google Scholar
  9. 9.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973) CrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1990) Google Scholar
  11. 11.
    Granger, G.: EOL B-spline Library (2009). http://www.eol.ucar.edu/homes/granger/bspline/doc/
  12. 12.
    Huang, L., Wan, G., Liu, C.: An improved parallel thinning algorithm. In: ICDAR ’03: Proceedings of the 7th International Conference on Document Analysis and Recognition, p. 780. IEEE Computer Society, Washington (2003) CrossRefGoogle Scholar
  13. 13.
    Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density. In: Proceedings of the 8th Eurographics Workshop on Visualization in Scientific Computing, pp. 45–55 (1997) Google Scholar
  14. 14.
    Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. IEEE Trans. Vis. Comput. Graph. 15(1), 62–76 (2009) CrossRefGoogle Scholar
  15. 15.
    Kaplan, C.S., Bosch, R.: TSP art. In: Proceedings of Bridges 2005, Mathematical Connections in Art, Music and Science, pp. 301–308 (2005) Google Scholar
  16. 16.
    Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Trans. Graph. 23(3), 303–308 (2004) CrossRefGoogle Scholar
  17. 17.
    Maharik, R., Bessmeltsev, M., Sheffer, A., Shamir, A., Carr, N.: Digital micrography. ACM Trans. Graph. 30(4), 100:1–100:12 (2011) CrossRefGoogle Scholar
  18. 18.
    Morales, J.E.: Virtual Mo (2005). http://www.virtualmo.com/
  19. 19.
    O’Donovan, P., Hertzmann, A.: Anipaint: interactive painterly animation from video. IEEE Trans. Vis. Comput. Graph. 18(3), 475–487 (2012) CrossRefGoogle Scholar
  20. 20.
    Okamoto, Y., Uehara, R.: How to make a picturesque maze. In: CCCG, pp. 137–140 (2009) Google Scholar
  21. 21.
    Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27(3), 92:1–92:8 (2008) CrossRefGoogle Scholar
  22. 22.
    Pedersen, H., Singh, K.: Organic labyrinths and mazes. In: NPAR ’06: Proceedings of the 4th International Symposium on Non-Photorealistic Animation and Rendering, pp. 79–86. ACM, New York (2006) CrossRefGoogle Scholar
  23. 23.
    Pullen, W.D.: Think labyrinth (2008). http://www.astrolog.org/labyrnth.htm
  24. 24.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1(3), 244–256 (1972) CrossRefGoogle Scholar
  25. 25.
    Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004) CrossRefGoogle Scholar
  26. 26.
    Slater, G.: Geoff Slater—the kilted, single line artist (2001). http://www.geoffslater.com/
  27. 27.
    Wan, L., Liu, X., Wong, T.T., Leung, C.S.: Evolving mazes from images. IEEE Trans. Vis. Comput. Graph. 16(2), 287–297 (2010) CrossRefGoogle Scholar
  28. 28.
    Wong, F.J., Takahashi, S.: Flow-based automatic generation of hybrid picture mazes. Comput. Graph. Forum 28(7), 1975–1984 (2009) CrossRefGoogle Scholar
  29. 29.
    Wong, F.J., Takahashi, S.: A graph-based approach to continuous line illustrations with variable levels of detail. Comput. Graph. Forum 30(7), 1931–1939 (2011) CrossRefGoogle Scholar
  30. 30.
    Xu, J., Kaplan, C.S.: Image-guided maze construction. ACM Trans. Graph. 26(3), 29 (2007) CrossRefGoogle Scholar
  31. 31.
    Zhang, E., Hays, J., Turk, G.: Interactive tensor field design and visualization on surfaces. IEEE Trans. Vis. Comput. Graph. 13(1), 94–107 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The University of TokyoTokyoJapan

Personalised recommendations