Advertisement

The Visual Computer

, Volume 29, Issue 6–8, pp 535–544 | Cite as

Mona Lisa alive

Create self-moving objects using hollow-face illusion
  • Jing Tong
  • Ligang Liu
  • Jin Zhou
  • Zhigeng PanEmail author
Original Article
  • 484 Downloads

Abstract

This paper presents a novel approach for creating self-moving objects using hollow-face illusion. Given a clip of character animation, our approach generates a static object. Looking at the object at different views, a similar deformation can be observed. To accomplish this challenging mission, we give qualitative and quantitative analysis of hollow-face illusion. Methodology in computer vision and human perception are utilized to design the algorithm. A static object is first generated to satisfy the relative motion illusion constraints. The illusion is then strengthened by back projecting the object to the 3D face space. Considering both “bottom-up” visual signal and “top-down” knowledge, the intended illusion can be generated. Experiments have shown the effectiveness of our algorithm. For example, expression varying illusion on an oil painting can be created by our method. The self-moving objects can be used in applications such as design, entertainment, advertisement, and public safety.

Keywords

Hollow-face illusion Nonrealistic modeling Geometric modeling Human perception 

Notes

Acknowledgements

We would like to thank the anonymous reviewers for their constructive comments. We thank Yu Shi and Linlin Xu for their help on the experiments. This work was supported jointly by the National Natural Science Foundation of China (61202284, 61170318, 61070071, 61222206) and National Social Science Foundation of China (12AZD120).

Supplementary material

(AVI 36.5 MB)

References

  1. 1.
    Alexa, M., Matusik, W.: Reliefs as images. ACM Trans. Graph. 29(4), 60 (2010) CrossRefGoogle Scholar
  2. 2.
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005) CrossRefGoogle Scholar
  3. 3.
    Baran, I., Keller, P., Bradley, D., Coros, S., Jarosz, W., Nowrouzezahrai, D., Gross, M.: Manufacturing layered attenuators for multiple prescribed shadow images. Comput. Graph. Forum 31(2), 603–610 (2012) CrossRefGoogle Scholar
  4. 4.
    Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. J. Comput. Vis. 35(1), 33–44 (1999) CrossRefGoogle Scholar
  5. 5.
    Bermano, A., Baran, I., Alexa, M., Matusk, W.: Shadowpix: multiple images from self shadowing. Comput. Graph. Forum 31(2), 593–602 (2012) CrossRefGoogle Scholar
  6. 6.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999) Google Scholar
  7. 7.
    Bohrn, I., Carbon, C.C., Hutzler, F.: Mona Lisa’s smile—perception or deception? Psychol. Sci. 21(3), 378–380 (2010) CrossRefGoogle Scholar
  8. 8.
    Borgeat, L., Godin, G., Massicotte, P., Poirier, G., Blais, F., Beraldin, J.A.: Visualizing and analyzing the Mona Lisa. IEEE Comput. Graph. Appl. 27(6), 60–68 (2007) CrossRefGoogle Scholar
  9. 9.
    Chi, M.T., Lee, T.Y., Qu, Y., Wong, T.T.: Self-animating images: illusory motion using repeated asymmetric patterns. ACM Trans. Graph. 27(3), 62 (2008) CrossRefGoogle Scholar
  10. 10.
    Dima, D., Roiser, J.P., Dietrich, D.E., Bonnemann, C., Lanfermann, H., Emrich, H.M., Dillo, W.: Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. NeuroImage 46(4), 1180–1186 (2009) CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Elber, G.: Ortho-pictures: 3d objects from independent 2d data sets. In: Advances in Architectural Geometry 2010, pp. 175–192 (2010) CrossRefGoogle Scholar
  13. 13.
    Gregory, R.L.: Knowledge in perception and illusion. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 352(1358), 1121–1127 (1997) CrossRefGoogle Scholar
  14. 14.
    Hill, H., Bruce, V.: A comparison between the hollow-face and ‘hollow-potato’ illusions. Perception 23(11), 1335–1337 (1994) CrossRefGoogle Scholar
  15. 15.
    Kontsevich, L.L., Tyler, C.W.: What makes Mona Lisa smile? Vis. Res. 44(13), 1493–1498 (2004) CrossRefGoogle Scholar
  16. 16.
    Króliczak, G., Heard, P., Goodale, M.A., Gregory, R.L.: Dissociation of perception and action unmasked by the hollow-face illusion. Brain Res. 1080(1), 9–16 (2006) CrossRefGoogle Scholar
  17. 17.
    Liu, B., Todd, J.T.: Perceptual biases in the interpretation of 3d shape from shading. Vis. Res. 44(18), 2135–2145 (2004) CrossRefGoogle Scholar
  18. 18.
    Livingstone, M.S.: Is it warm? Is it real? Or just low spatial frequency? Science 290(5495), 1299 (2000) CrossRefGoogle Scholar
  19. 19.
    Mitra, N.J., Pauly, M.: Shadow art. ACM Trans. Graph. 28(5), 156 (2009) Google Scholar
  20. 20.
    Mohr, A., Gleicher, M.: Building efficient, accurate character skins from examples. ACM Trans. Graph. 22(3), 562–568 (2003) CrossRefGoogle Scholar
  21. 21.
    Oliva, A., Torralba, A., Schyns, P.G.: Hybrid images. ACM Trans. Graph. 25(3), 527–532 (2006) CrossRefGoogle Scholar
  22. 22.
    Papathomas, T.V.: Art pieces that ‘move’ in our minds—an explanation of illusory motion based on depth reversal. Spat. Vis. 21(1–2), 79–95 (2007) CrossRefGoogle Scholar
  23. 23.
    Papathomas, T.V.: Rolling eyes on a hollow mask (2008). http://gif.neuralcorrelate.com/finalists_2008/papathomas/BestIllusionSubmitMask08.pdf
  24. 24.
    Papathomas, T.V., Bono, L.M.: Experiments with a hollow mask and a reverspective: top-down influences in the inversion effect for 3-d stimuli. Perception 33(9), 1129–1138 (2004) CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Perez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003) CrossRefGoogle Scholar
  27. 27.
    Ruo, Z., Ping-Sing, T., Cryer, J.E., Shah, M.: Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706 (1999) CrossRefGoogle Scholar
  28. 28.
    Sela, G., Elber, G.: Generation of view dependent models using free form deformation. Vis. Comput. 23(3), 219–229 (2007) CrossRefGoogle Scholar
  29. 29.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rossl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184 (2004) CrossRefGoogle Scholar
  30. 30.
    Wenhao, S., Belyaev, A., Seidel, H.P.: Automatic generation of bas-reliefs from 3d shapes. In: IEEE International Conference on Shape Modeling and Applications, pp. 211–214 (2007) Google Scholar
  31. 31.
    Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., Finkelstein, A.: Digital bas-relief from 3d scenes. ACM Trans. Graph. 26(3), 32 (2007) CrossRefGoogle Scholar
  32. 32.
    Wu, T.P., Fu, C.W., Yeung, S.K., Jia, J., Tang, C.K.: Modeling and rendering of impossible figures. ACM Trans. Graph. 29(2), 13 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of IOT EngineeringHohai UniversityChangzhouChina
  2. 2.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Institute of Applied Mathematics and Engineering ComputationsHangzhou Dianzi UniversityHangzhouChina
  4. 4.Digital Media and HCI Research CenterHangzhou Normal UniversityHangzhouChina

Personalised recommendations