The Visual Computer

, Volume 30, Issue 1, pp 81–92 | Cite as

Real-time simulation of lightweight rigid bodies

Original Article

Abstract

Unlike common rigid bodies, lightweight rigid bodies have special and spectacular motions that are known as free fall, such as fluttering (oscillation from side to side) and tumbling (rotation and sideways drifting). However, computer graphics applications cannot simulate the dynamics of lightweight rigid bodies in various environments realistically and efficiently. In this study, we first analyze the physical characteristics of free-fall motions in quiescent flow and propose a new procedural motion-synthesis method for modeling free-fall motions in interactive environments. Six primitive motions of lightweight rigid bodies are defined in a phase diagram and analyzed separately using a trajectory-search tree and precomputed trajectory database. The global paths of free-fall motions are synthesized on the basis of these primitive motions by using a free-fall motion graph whose edges are connected in the Markov-chain model. Then, our approach integrates external forces (e.g., a wind field) by using an improved noise-based algorithm under different force magnitudes and object release heights. This approach exhibits not only realistic simulation results in various environments but also fast computation to meet real-time requirements.

Keywords

Natural phenomenon Motion synthesis Lightweight rigid body Real-time simulation 

References

  1. 1.
    Andersen, A., Pesavento, U., Wang, Z.J.: Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 65–90 (2005) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Aoki, K., Hasegawa, O., Nagahashi, H.: Behavior learning and animation synthesis of falling flat objects. J. Adv. Comput. Intell. Intell. Inform. 8(2), 223–230 (2004) Google Scholar
  3. 3.
    Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. 21, 483–490 (2002) CrossRefMATHGoogle Scholar
  4. 4.
    Field, S.B., Klaus, M., Moore, M.G., Nori, F.: Chaotic dynamics of falling disks. Nature 388, 252–254 (1997) CrossRefGoogle Scholar
  5. 5.
    Haevre, W.V., Fiore, F.D., Reeth, F.V.: Physically-based driven tree animations. In: Chiba, N., Galin, E. (eds.) Eurographics Workshop on Natural Phenomena, pp. 75–82. Eurographics Association, Goslar (2006). doi:10.2312/NPH/NPH06/075-082 Google Scholar
  6. 6.
    Haiyan, L., Qingjie, S., Hui, Z., Qin, Z.: Example-based motion generation of falling leaf. In: 2010 International Conference on Computer Design and Applications (ICCDA), vol. 5, pp. V5-217–V5-221 (2010) Google Scholar
  7. 7.
    Jones, M.A., Shelley, M.J.: Falling cards. J. Fluid Mech. 540, 393–425 (2005) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Khorloo, O., Gunjee, Z., Chiba, N.: Wind field synthesis for animating wind-induced vibration. Int. J. Virtual Real. 10, 53–60 (2011) Google Scholar
  9. 9.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21, 473–482 (2002) CrossRefGoogle Scholar
  10. 10.
    Mahadevan, L., Ryu, W.S., Samuel, A.D.T.: Tumbling cards. Phys. Fluids 11, 1–3 (1999) CrossRefMATHGoogle Scholar
  11. 11.
    Maxwell, J.C.: On a particular case of the descent of a heavy body in a resisting medium. Camb. Dublin Math. J. 9, 145–148 (1854) Google Scholar
  12. 12.
    Olesen, H.R., Larsen, S.E., Hojstrup, J.: Modelling velocity spectra in the lower part of the planetary boundary layer. Bound.-Layer Meteorol. 29, 285–312 (1984) CrossRefGoogle Scholar
  13. 13.
    Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., Chiba, N.: A hybrid method for real-time animation of trees swaying in wind fields. Vis. Comput. 20, 613–623 (2004) CrossRefGoogle Scholar
  14. 14.
    Razavi, P.: On the motion of falling leaves. ArXiv e-prints (2010) Google Scholar
  15. 15.
    Reissell, L.M., Pai, D.K.: Modeling stochastic dynamical systems for interactive simulation. Comput. Graph. Forum 20, 339–348 (2001) CrossRefGoogle Scholar
  16. 16.
    Shi, L., Yu, Y., Wojtan, C., Chenney, S.: Controllable motion synthesis in a gaseous medium. Vis. Comput. 21(7), 474–487 (2005) CrossRefGoogle Scholar
  17. 17.
    Shinya, M., Fournier, A.: Stochastic motion–motion under the influence of wind. Comput. Graph. Forum 11(3), 119–128 (1992) CrossRefMATHGoogle Scholar
  18. 18.
    Stam, J., Eugene, F.: Turbulent wind fields for gaseous phenomena. In: SIGGRAPH’93, pp. 369–376. ACM Press, New York (1993) Google Scholar
  19. 19.
    Stringham, G.E., Daryl, S., Guy, H.: The behavior of large particles falling in quiescent liquids. Geol. Surv. Prof. Pap. 562-C, C1–C36 (1969) Google Scholar
  20. 20.
    Tanabe, Y., Kaneko, K.: Behavior of a falling paper. Phys. Rev. Lett. 73, 1372–1375 (1994) CrossRefGoogle Scholar
  21. 21.
    Thuillier, R.H., Lappe, U.O.: Wind and temperature profile characteristics from observations on a 1400 ft tower. J. Appl. Meteorol. 3, 299–306 (1964) CrossRefGoogle Scholar
  22. 22.
    Vázquez, P.-P., Balsa, M.: Rendering falling leaves on graphics hardware. J. Virtual Real. Broadcast. 5(2) (2008). http://hdl.handle.net/2117/13041
  23. 23.
    Wei, X., Zhao, Y., Fan, Z., Li, W., Qiu, F., Yoakum-Stover, S., Kaufman, A.E.: Lattice-based flow field modeling. IEEE Trans. Vis. Comput. Graph. 10, 719–729 (2004) CrossRefGoogle Scholar
  24. 24.
    Weismann, S., Pinkall, U.: Underwater rigid body dynamics. ACM Trans. Graph. 31(4), 104:1–104:7 (2012) CrossRefGoogle Scholar
  25. 25.
    Willmarth, W.W., Hawk, N.E., Harvey, R.L.: Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids 7, 197–208 (1964) CrossRefMATHGoogle Scholar
  26. 26.
    Zhang, L., Zhang, Y., Jiang, Z., Li, L., Chen, W., Peng, Q.: Precomputing data-driven tree animation. J. Vis. Comput. Animat. 18(4–5), 371–382 (2007) Google Scholar
  27. 27.
    Zhong, H., Chen, S., Lee, C.: Experimental study of freely falling thin disks: transition from planar zigzag to spiral. Phys. Fluids 23(1) (2011) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Knowledge ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations